RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      효율적인 J 관계 계산을 위한 L 클래스 계산의 개선 = Improved Computation of L-Classes for Efficient Computation of J Relations

      한글로보기

      https://www.riss.kr/link?id=A82494165

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The Green's equivalence relations have played a fundamental role in the development of semigroup theory. They are concerned with mutual divisibility of various kinds, and all of them reduce to the universal equivalence in a group. Boolean matrices have been successfully used in various areas, and many researches have been performed on them. Studying Green's relations on a monoid of boolean matrices will reveal important characteristics about boolean matrices, which may be useful in diverse applications. Although there are known algorithms that can compute Green relations, most of them are concerned with finding one equivalence class in a specific Green's relation and only a few algorithms have been appeared quite recently to deal with the problem of finding the whole D or J equivalence relations on the monoid of all nxn Boolean matrices. However, their results are far from satisfaction since their computational complexity is exponential-their computation requires multiplication of three Boolean matrices for each of all possible triples of nxn Boolean matrices and the size of the monoid of all nxn Boolean matrices grows exponentially as n increases. As an effort to reduce the execution time, this paper shows an isomorphism between the R relation and L relation on the monoid of all n x n Boolean matrices in terms of transposition, introduces theorems based on it, discusses an improved algorithm for the J relation computation whose design reflects those theorems and gives its execution results.
      번역하기

      The Green's equivalence relations have played a fundamental role in the development of semigroup theory. They are concerned with mutual divisibility of various kinds, and all of them reduce to the universal equivalence in a group. Boolean matrices hav...

      The Green's equivalence relations have played a fundamental role in the development of semigroup theory. They are concerned with mutual divisibility of various kinds, and all of them reduce to the universal equivalence in a group. Boolean matrices have been successfully used in various areas, and many researches have been performed on them. Studying Green's relations on a monoid of boolean matrices will reveal important characteristics about boolean matrices, which may be useful in diverse applications. Although there are known algorithms that can compute Green relations, most of them are concerned with finding one equivalence class in a specific Green's relation and only a few algorithms have been appeared quite recently to deal with the problem of finding the whole D or J equivalence relations on the monoid of all nxn Boolean matrices. However, their results are far from satisfaction since their computational complexity is exponential-their computation requires multiplication of three Boolean matrices for each of all possible triples of nxn Boolean matrices and the size of the monoid of all nxn Boolean matrices grows exponentially as n increases. As an effort to reduce the execution time, this paper shows an isomorphism between the R relation and L relation on the monoid of all n x n Boolean matrices in terms of transposition, introduces theorems based on it, discusses an improved algorithm for the J relation computation whose design reflects those theorems and gives its execution results.

      더보기

      목차 (Table of Contents)

      • 1. 서 론
      • 2. 관련 연구
      • 3. 용어 및 기호 정의
      • 4. J 관계 계산 알고리즘의 개선
      • 5. 계산 복잡도 및 실행 결과
      • 1. 서 론
      • 2. 관련 연구
      • 3. 용어 및 기호 정의
      • 4. J 관계 계산 알고리즘의 개선
      • 5. 계산 복잡도 및 실행 결과
      • 6. 결 론
      더보기

      참고문헌 (Reference)

      1 한재일, "효율적인 D-클래스 계산을 위한 알고리즘" 한국IT서비스학회 6 (6): 151-158, 2007

      2 한재일, "불리언 행렬의 모노이드에서의 J 관계 계산 알고리즘" 한국IT서비스학회 7 (7): 221-230, 2008

      3 한재일, "모든 l x n, n x m, m x k 불리언 행렬 사이의 중첩곱셈에 대한 연구" 한국IT서비스학회 5 (5): 191-198, 2006

      4 Angluin, D., "The four Russians’ algorithm for boolean matrix multiplication is optimal in its class" 8 (8): 29-33, 1976

      5 Pratt, V. R., "The Power of Negative Thinking in Multiplying Boolean matrices" 80-83, 1974

      6 Straubing, H., "The Burnside problem for semigroups of matrices. in: Combinatorics on Words, Progress and Perspectives" Academic Press 279-295, 1983

      7 Rim, D. S., "Tables of DClasses in the semigroup B of the binary relations on a set X with n-elements" 20 (20): 9-13, 1983

      8 Lallement, G., "Semigroups and Combinatorial Applications" John Wiley and Sons 1979

      9 Heyworth, A., "One-Sided Noncommutative Grobner Bases with Applications to Computing Green’s Relations" 242 : 401-416, 2001

      10 Plemmons, R. J., "On the semigroup of binary relations" 35 : 743-753, 1970

      1 한재일, "효율적인 D-클래스 계산을 위한 알고리즘" 한국IT서비스학회 6 (6): 151-158, 2007

      2 한재일, "불리언 행렬의 모노이드에서의 J 관계 계산 알고리즘" 한국IT서비스학회 7 (7): 221-230, 2008

      3 한재일, "모든 l x n, n x m, m x k 불리언 행렬 사이의 중첩곱셈에 대한 연구" 한국IT서비스학회 5 (5): 191-198, 2006

      4 Angluin, D., "The four Russians’ algorithm for boolean matrix multiplication is optimal in its class" 8 (8): 29-33, 1976

      5 Pratt, V. R., "The Power of Negative Thinking in Multiplying Boolean matrices" 80-83, 1974

      6 Straubing, H., "The Burnside problem for semigroups of matrices. in: Combinatorics on Words, Progress and Perspectives" Academic Press 279-295, 1983

      7 Rim, D. S., "Tables of DClasses in the semigroup B of the binary relations on a set X with n-elements" 20 (20): 9-13, 1983

      8 Lallement, G., "Semigroups and Combinatorial Applications" John Wiley and Sons 1979

      9 Heyworth, A., "One-Sided Noncommutative Grobner Bases with Applications to Computing Green’s Relations" 242 : 401-416, 2001

      10 Plemmons, R. J., "On the semigroup of binary relations" 35 : 743-753, 1970

      11 Atkinson, D. M., "On the integer complexity of Boolean matrix multiplication" 18 (18): 53-, 1986

      12 Lallement, G., "On the determination of Green’s relations in finite transformation semigroups" 10 : 481-498, 1990

      13 Simon, I., "On semigroups of matrices over the tropical semiring" 28 : 277-294, 1994

      14 Wall, J. R., "Green’s relations for stochastic matrices" 25 (25): 247-260, 1975

      15 Konieczny, J., "Green’s equivalences in finite semigroups of binary relations" 48 : 235-252, 1994

      16 Sutner, K., "Finite State Machines and Syntatic Semigroups" 2 : 78-87, 1991

      17 Lee, L., "Fast context-free grammar parsing require fast Boolean matrix multiplication" 49 (49): 1-15, 2002

      18 Yi, X., "Fast Encryption for Multimedia" 47 (47): 101-107, 2001

      19 Linton, S. A., "Computing Transformation Semigroups" 33 : 145-162, 2002

      20 김창범, "Classifications of D-classes in the semigroup Mn(F) of all nxn Boolean matrices over F = {0, 1}" 16 (16): 338-348, 2006

      21 Booth, K. S., "Boolean matrix multiplication using only bit operations" 9 (9): 23-, 1977

      22 Howie, J. M., "An Introduction to semigroup theory" Oxford University Press 1995

      23 Froidure, V., "Algorithms for computing finite semigroups" 112-126, 1997

      24 Champarnaud, J. M., "AUTOMATE, a computing package for automata and finite semigroups" 12 : 197-220, 1991

      25 Cousineau, G., "APL programs for direct computation of a finite semigroup" 73 : 67-74, 1973

      26 Nakamura, Y., "A partitioning- based logic optimization method for large scale circuits with Boolean matrx" 653-657, 1995

      27 Comstock, D. R., "A note on multiplying Boolean matrices II" 7 (7): 13-, 1964

      28 Yelowitz, L., "A Note on the Transitive Closure of a Boolean Matrix" 25 (25): 30-, 1978

      29 Macii, E., "A Discussion of Explicit Methods for Transitive Closure Computation Based on Matrix Multiplication" 799-801, 1995

      30 Martin, D. F., "A Boolean matrix method for the computation of linear precedence functions" 15 (15): 448-454, 1972

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2014-05-28 학술지명변경 외국어명 : Journal of the Korea Society of IT Services -> Journal of Information Technology Services KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2009-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2008-01-01 평가 등재후보학술지 유지 (등재후보2차) KCI등재후보
      2007-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2006-08-11 학술지명변경 한글명 : 한국SI학회지 -> 한국IT서비스학회지
      외국어명 : Journal of the Korea Society of System Integration -> Journal of the Korea Society of IT Services
      KCI등재후보
      2006-08-11 학회명변경 한글명 : 한국SI학회 -> 한국IT서비스학회
      영문명 : Korea Society Of System Integration -> Korea Society Of IT Services
      KCI등재후보
      2006-06-21 학회명변경 한글명 : 한국SI학회 -> 한국IT서비스학회
      영문명 : Korea Society Of System Integration -> Korea Society Of IT Services
      KCI등재후보
      2005-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.49 0.49 0.5
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.48 0.47 0.627 0.17
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼