RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      On the self-assembly and bioactivity of functional DNA-peptide conjugates

      한글로보기

      https://www.riss.kr/link?id=T15731813

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      수많은 생물학적 이벤트에서 DNA와 펩타이드의 광범위한 관여는 일차적 서열에 의해 결정된 다양한 기능성에서 기인한다. 이러한 점과 더불어 DNA와 펩타이드는 그 자체만으로는 달성하기 어려운 특정한 목적을 달성하기 위해 보다 복잡한 구조로 서로 연결되기도 한다. 리보솜, 텔로머레이즈, 뉴클레오솜 등을 예로 들 수 있다. 수십억 년에 걸친 진화 과정 동안, 자연은 분자들 간의 정교한 비공유결합적 상호작용에 의해 구동되는 그러한 연결에 대한 통제권을 갖게 된 반면, 그에 대한 인간의 통제는 여전히 개선의 여지가 있다. 자연의 접근법을 모방하는 한 가지 방법은 DNA와 펩타이드의 공유결합적 짝짓기이다. 이 접근법을 사용하면, 작은 분자들이 더 큰 분자로 조립되는 과정에서 발생하는 불가피한 엔트로피의 변화를 완화시킬 수 있어 복합체를 만드는 과정을 더 쉽게 통제할 수 있다.

      DNA-펩타이드 짝이 현재 널리 사용되고 있지만, DNA와 펩타이드의 고체상 합성에서의 서열에 따른 특성과 사용되는 화학물질간의 비호환성 때문에, DNA와 펩타이드의 짝짓기는 어려워질 수 있다. 예를 들어, 자가조립성이 강한 펩타이드들은 반응기들 간의 만남을 잠재적으로 방해할 수 있는 응집성 때문에 짝짓기 반응 동안에 종종 문제를 일으킬 수 있다. 이로인해, 현재까지 제한된 범위의 아미노산만 사용되고 있다. 이용 가능한 펩타이드 서열을 풍부하게 하고 적용 영역을 확대하기 위해서는 자가조립 DNA-펩타이드 짝을 위한 새로운 제작 방법이 필요하다.
      분자 고리화에 대한 합성 방법의 발전에도 불구하고, DNA-펩타이드 짝은 분자의 성질에 극적인 변화를 일으킬 수 있는 고리 위상으로부터 거의 혜택을 받지 못했다. 나타날 수 있는 변화는 열 안정성과 타겟에 대한 결합력 향상을 예로 들 수 있다. 고리형 DNA-펩타이드 짝을 합성하여 본래의 성질을 바꾸려는 시도가 몇 차례 있었지만, 여전히 고리형 DNA-펩타이드 짝의 제작에 대한 일반화된 방법은 부족한 실정이다.
      본 논문에서 저자는, 공유 결합이 DNA-펩타이드 짝으로 구성된 균일한 초분자 시스템의 형성을 가능하게 하는 수단으로 활용될 수 있다는 것을 확인할 수 있었다. 초분자 중합화 가능성에도 불구하고, 공유 결합은 초분자 구성 블록이 샘플링해야 하는 자유도를 줄이고, 전체 조립 과정을 단순화함으로써 10 nm 이하의 잘 정의된 나노 구조물의 형성을 유도하였다. 세포 실험에서 RGD기를 가진 초분자 디옥시리보핵단백질(suDNP)은 형질 주입 시약의 도움 없이 GFP를 발현하는 HeLa 세포내로 들어가는데 성공했으며, 비록 lipoplex보다 효과가 낮았지만 GFP 발현 수준을 최대 20% 억제하는 데 성공했다. 그러나 세포독성 측면에서는 suDNP가 lipoplex보다 유리했는데, 이는 타겟에 대한 선택성 측면에서 단일 가닥 DNA보다 조절 가능한 안정성을 갖는 이중 나선이 우위를 갖고 있기 때문일 것으로 생각된다. 이 프로토타입을 시작으로 초분자조립을 잘 제어하면 보다 정교한 구조와 기능을 갖춘 인공 디옥시리보핵단백질 개발이 가능할 것으로 생각된다.
      또한 고체상 합성을 통한 자가조립 DNA-펩타이드 짝의 제작에 있어 티올-말레이미드 반응과 구리 촉매 아지드-알킨 고리첨가 반응(CuAAC)에 필요한 반응기의 최적 배치도 조사되었다. 결과는 티올-말레미드 반응보다 CuAAC가 자가조립 DNA-펩타이드 짝의 합성에 더 적합했고, 아지드 그룹을 가진 DNA와 알킨 그룹을 가진 펩타이드를 사용한 배치가 합당한 수율로 자가조립 DNA-펩타이드 짝을 만들 수 있음을 보였다. 또한 정제 방법으로써 요소-폴리아크릴아미드 전기 영동(PAGE)은 자가조립 성향을 효과적으로 억제하여 고성능 액체크로마토그래피(HPLC)보다 더 좋은 수율을 낼 수 있는 것으로 보였다. 요소 PAGE가 항상 HPLC보다 더 효율적인 것은 아니지만, 요소 PAGE를 자가조립 DNA-펩타이드 짝의 정제에 사용할 수 있음을 확인하였다.
      마지막으로, 자가조립 고리형 DNA-펩타이드 짝의 합성 방법과, 전반적인 형태, 염기 짝짓기 능력, 자가조립 측면에서의 고리형과 선형 DNA-펩타이드 짝의 차이를 조사하였다. 티올-말레이미드 반응과 CuAAC가 사용된 액상 절편 결합(LPFC)이 자가조립 고리형 DNA-펩타이드 짝의 제작에 효과적임을 알 수 있었다. 고리화는 사용된 펩타이드 서열에 한해서 DNA-펩타이드 짝의 전체적인 형태 및 펩타이드의 형태에 미미한 영향을 보였다. 반면에, 고리화는 DNA-펩타이드 짝의 염기 짝짓기 능력에 큰 영향을 미쳤다. 선형 DNA-펩타이드 짝은 고리형보다 염기 짝짓기를 더 잘하는 것으로 나타났다. DNA-펩타이드 짝의 자가조립은 상당한 영향을 받았다. 원자력 현미경과 동적 광 산란 분석을 통해, 선형 DNA-펩타이드 짝이 구형 마이셀과 원통형 마이셀 등의 불균질한 혼합으로 자가조립되는 반면, 고리형 DNA-펩타이드 짝은 균일한 구형 마이셀로 자가조립되는 것을 확인하였다. 또한, 고리형 DNA-펩타이드 짝의 약화된 염기 짝짓기 능력이 이중나선 짝의 자가조립 현상에 반영되었음을 알 수 있었다. 즉, L-duplex는 고밀도 구조로, C-duplex는 느슨하고 덜 얽혀있는 구조로 자가조립하는 것으로 나타났다.
      번역하기

      수많은 생물학적 이벤트에서 DNA와 펩타이드의 광범위한 관여는 일차적 서열에 의해 결정된 다양한 기능성에서 기인한다. 이러한 점과 더불어 DNA와 펩타이드는 그 자체만으로는 달성하기 어...

      수많은 생물학적 이벤트에서 DNA와 펩타이드의 광범위한 관여는 일차적 서열에 의해 결정된 다양한 기능성에서 기인한다. 이러한 점과 더불어 DNA와 펩타이드는 그 자체만으로는 달성하기 어려운 특정한 목적을 달성하기 위해 보다 복잡한 구조로 서로 연결되기도 한다. 리보솜, 텔로머레이즈, 뉴클레오솜 등을 예로 들 수 있다. 수십억 년에 걸친 진화 과정 동안, 자연은 분자들 간의 정교한 비공유결합적 상호작용에 의해 구동되는 그러한 연결에 대한 통제권을 갖게 된 반면, 그에 대한 인간의 통제는 여전히 개선의 여지가 있다. 자연의 접근법을 모방하는 한 가지 방법은 DNA와 펩타이드의 공유결합적 짝짓기이다. 이 접근법을 사용하면, 작은 분자들이 더 큰 분자로 조립되는 과정에서 발생하는 불가피한 엔트로피의 변화를 완화시킬 수 있어 복합체를 만드는 과정을 더 쉽게 통제할 수 있다.

      DNA-펩타이드 짝이 현재 널리 사용되고 있지만, DNA와 펩타이드의 고체상 합성에서의 서열에 따른 특성과 사용되는 화학물질간의 비호환성 때문에, DNA와 펩타이드의 짝짓기는 어려워질 수 있다. 예를 들어, 자가조립성이 강한 펩타이드들은 반응기들 간의 만남을 잠재적으로 방해할 수 있는 응집성 때문에 짝짓기 반응 동안에 종종 문제를 일으킬 수 있다. 이로인해, 현재까지 제한된 범위의 아미노산만 사용되고 있다. 이용 가능한 펩타이드 서열을 풍부하게 하고 적용 영역을 확대하기 위해서는 자가조립 DNA-펩타이드 짝을 위한 새로운 제작 방법이 필요하다.
      분자 고리화에 대한 합성 방법의 발전에도 불구하고, DNA-펩타이드 짝은 분자의 성질에 극적인 변화를 일으킬 수 있는 고리 위상으로부터 거의 혜택을 받지 못했다. 나타날 수 있는 변화는 열 안정성과 타겟에 대한 결합력 향상을 예로 들 수 있다. 고리형 DNA-펩타이드 짝을 합성하여 본래의 성질을 바꾸려는 시도가 몇 차례 있었지만, 여전히 고리형 DNA-펩타이드 짝의 제작에 대한 일반화된 방법은 부족한 실정이다.
      본 논문에서 저자는, 공유 결합이 DNA-펩타이드 짝으로 구성된 균일한 초분자 시스템의 형성을 가능하게 하는 수단으로 활용될 수 있다는 것을 확인할 수 있었다. 초분자 중합화 가능성에도 불구하고, 공유 결합은 초분자 구성 블록이 샘플링해야 하는 자유도를 줄이고, 전체 조립 과정을 단순화함으로써 10 nm 이하의 잘 정의된 나노 구조물의 형성을 유도하였다. 세포 실험에서 RGD기를 가진 초분자 디옥시리보핵단백질(suDNP)은 형질 주입 시약의 도움 없이 GFP를 발현하는 HeLa 세포내로 들어가는데 성공했으며, 비록 lipoplex보다 효과가 낮았지만 GFP 발현 수준을 최대 20% 억제하는 데 성공했다. 그러나 세포독성 측면에서는 suDNP가 lipoplex보다 유리했는데, 이는 타겟에 대한 선택성 측면에서 단일 가닥 DNA보다 조절 가능한 안정성을 갖는 이중 나선이 우위를 갖고 있기 때문일 것으로 생각된다. 이 프로토타입을 시작으로 초분자조립을 잘 제어하면 보다 정교한 구조와 기능을 갖춘 인공 디옥시리보핵단백질 개발이 가능할 것으로 생각된다.
      또한 고체상 합성을 통한 자가조립 DNA-펩타이드 짝의 제작에 있어 티올-말레이미드 반응과 구리 촉매 아지드-알킨 고리첨가 반응(CuAAC)에 필요한 반응기의 최적 배치도 조사되었다. 결과는 티올-말레미드 반응보다 CuAAC가 자가조립 DNA-펩타이드 짝의 합성에 더 적합했고, 아지드 그룹을 가진 DNA와 알킨 그룹을 가진 펩타이드를 사용한 배치가 합당한 수율로 자가조립 DNA-펩타이드 짝을 만들 수 있음을 보였다. 또한 정제 방법으로써 요소-폴리아크릴아미드 전기 영동(PAGE)은 자가조립 성향을 효과적으로 억제하여 고성능 액체크로마토그래피(HPLC)보다 더 좋은 수율을 낼 수 있는 것으로 보였다. 요소 PAGE가 항상 HPLC보다 더 효율적인 것은 아니지만, 요소 PAGE를 자가조립 DNA-펩타이드 짝의 정제에 사용할 수 있음을 확인하였다.
      마지막으로, 자가조립 고리형 DNA-펩타이드 짝의 합성 방법과, 전반적인 형태, 염기 짝짓기 능력, 자가조립 측면에서의 고리형과 선형 DNA-펩타이드 짝의 차이를 조사하였다. 티올-말레이미드 반응과 CuAAC가 사용된 액상 절편 결합(LPFC)이 자가조립 고리형 DNA-펩타이드 짝의 제작에 효과적임을 알 수 있었다. 고리화는 사용된 펩타이드 서열에 한해서 DNA-펩타이드 짝의 전체적인 형태 및 펩타이드의 형태에 미미한 영향을 보였다. 반면에, 고리화는 DNA-펩타이드 짝의 염기 짝짓기 능력에 큰 영향을 미쳤다. 선형 DNA-펩타이드 짝은 고리형보다 염기 짝짓기를 더 잘하는 것으로 나타났다. DNA-펩타이드 짝의 자가조립은 상당한 영향을 받았다. 원자력 현미경과 동적 광 산란 분석을 통해, 선형 DNA-펩타이드 짝이 구형 마이셀과 원통형 마이셀 등의 불균질한 혼합으로 자가조립되는 반면, 고리형 DNA-펩타이드 짝은 균일한 구형 마이셀로 자가조립되는 것을 확인하였다. 또한, 고리형 DNA-펩타이드 짝의 약화된 염기 짝짓기 능력이 이중나선 짝의 자가조립 현상에 반영되었음을 알 수 있었다. 즉, L-duplex는 고밀도 구조로, C-duplex는 느슨하고 덜 얽혀있는 구조로 자가조립하는 것으로 나타났다.

      더보기

      다국어 초록 (Multilingual Abstract)

      The extensive engagement of DNA and peptide in a myriad of biological events stems from their diverse functionalities determined by primary sequences. In addition to which, they associate with each other into more complex structures to fulfill particular purposes that DNAs or peptides by itself can hardly achieve, with examples being ribosomes, te-lomerases, and nucleosomes. Over several billion years of evolution nature has gain control of such associations driven by exquisite non-covalent interactions between components, whereas human control of which has still room for improvement. One way to simulate na-ture’s approach is covalent conjugation of DNAs and peptides. With this approach, unfa-vorable entropic change which inevitably arises from small entities being assembled into larger ones could be alleviated, resulting in the complexation being more facile to control.
      While DNA-peptide conjugates are now widely employed, owing to sequence-dependent properties and chemical incompatibility in the solid-phase synthesis for DNAs and peptides, the conjugation between DNAs and peptides can become challenging. For example, highly self-assembling peptides often pose a problem during conjugation reactions because of their aggregation propensity which can potentially hinder the encounter between reactive groups, thus only limited range of amino acids can be employed to date. To enrich the pool of available peptide sequences and expand application areas, a new fabrication method for self-assembling DNA-peptide conjugates is needed.
      Despite recent advances in synthetic routes to molecular cyclization, DNA-peptide conju-gates scarcely benefited from cyclic topology which can engender dramatical changes in the properties of molecules. Such changes include enhanced thermal stability and binding affin-ity to targets. A few attempts have been made to synthesize DNA-peptide conjugates with cyclic topology and alter their properties; however, there still lacks a generalized method for the fabrication of cyclic DNA-peptide conjugates.
      Herein, I demonstrated that covalent conjugation could be utilized as a means to enable the formation of homogeneous supramolecular system consisting of DNA-peptide conju-gates. Despite the possibility of supramolecular polymerization, the covalent bonding suc-cessfully led to the fabrication of well-defined sub-10-nm nanostructure possibly by reduc-ing the number of degrees of freedom that the supramolecular building blocks need to sam-ple and simplifying the overall assembly process. In celluo experiment showed that supra-molecular deoxyribonucleoprotein (suDNP) with RGD moiety entered HeLa cells express-ing green fluorescent protein (GFP) without the assistance of transfection agents and suc-cessfully downregulated the level of GFP expression by up to 20%, albeit less effective than the lipoplex. However, suDNP was more advantageous than the lipoplex in terms of cyto-toxicity, which is possibly due to the fact that duplexes of programmable stability had a clear advantage over single-stranded DNAs in terms of specificity to the target as verified by PAGE. Further supramolecular controls from this prototype will enable the development of artificial deoxyribonucleoproteins with more sophisticated structures and functions.
      Also, the best placement of reactive groups needed for the thiol-maleimide reaction and copper catalyzed azide-alkyne cycloaddition (CuAAC) in the synthesis of self-assembling DNA-peptide conjugates via solid-phase peptide fragment condensation was investigated. The results showed that CuAAC was more suitable than the thiol-maleimide reaction for the construction of self-assembling DNA-peptide conjugates and that the placement where DNA with azide groups and peptide with alkyne groups were employed gave rise to self-assembling DNA-peptide conjugates in a reasonable yield. Additionally, it seemed that urea-polyacrylamide gel electrophoresis (PAGE) as a purification method effectively suppressed self-assembling propensity and produced better yields than high-performance liquid chro-matography (HPLC). Although urea PAGE may not always be more efficient than HPLC, it was confirmed that urea PAGE can also be employed for the purification of self-assembling DNA-peptide conjugates.
      Lastly, the synthetic method for self-assembling cyclic DNA-peptide conjugates, and dif-ferences between cyclic and linear DNA-peptide conjugates in terms of overall confor-mation, base pairing ability, and self-assembly were demonstrated. It was shown that liquid phase fragment conjugation (LPFC) combined with the thiol-maleimide reaction and Cu-AAC was effective for the fabrication of self-assembling cyclic DNA-peptide conjugates. Cyclization showed a marginal effect on the overall and peptide conformation of DNA-peptide conjugates within the employed peptide sequence. On the other hand, cyclization exerted a great deal of influence on the base pairing ability of DNA-peptide conjugates; lin-ear DNA-peptide conjugates were more capable of base paring than their cyclic counterparts. The self-assembly of DNA-peptide conjugates was considerably affected. Atomic force mi-croscopy and dynamic light scattering analysis showed that linear DNA-peptide conjugates self-assembled into the heterogenous mixture of spherical and cylindrical micelles, whereas cyclic DNA-peptide conjugates self-assembled into homogeneous spherical micelles. Fur-thermore, it was revealed that the debilitated base pairing ability of cyclic DNA-peptide con-jugates was reflected in the self-assembly profiles of the conjugate duplexes; that is, L-duplex self-assembled into a highly dense structure, whereas C-duplex self-assembled into a loose, less associated structure.
      번역하기

      The extensive engagement of DNA and peptide in a myriad of biological events stems from their diverse functionalities determined by primary sequences. In addition to which, they associate with each other into more complex structures to fulfill particu...

      The extensive engagement of DNA and peptide in a myriad of biological events stems from their diverse functionalities determined by primary sequences. In addition to which, they associate with each other into more complex structures to fulfill particular purposes that DNAs or peptides by itself can hardly achieve, with examples being ribosomes, te-lomerases, and nucleosomes. Over several billion years of evolution nature has gain control of such associations driven by exquisite non-covalent interactions between components, whereas human control of which has still room for improvement. One way to simulate na-ture’s approach is covalent conjugation of DNAs and peptides. With this approach, unfa-vorable entropic change which inevitably arises from small entities being assembled into larger ones could be alleviated, resulting in the complexation being more facile to control.
      While DNA-peptide conjugates are now widely employed, owing to sequence-dependent properties and chemical incompatibility in the solid-phase synthesis for DNAs and peptides, the conjugation between DNAs and peptides can become challenging. For example, highly self-assembling peptides often pose a problem during conjugation reactions because of their aggregation propensity which can potentially hinder the encounter between reactive groups, thus only limited range of amino acids can be employed to date. To enrich the pool of available peptide sequences and expand application areas, a new fabrication method for self-assembling DNA-peptide conjugates is needed.
      Despite recent advances in synthetic routes to molecular cyclization, DNA-peptide conju-gates scarcely benefited from cyclic topology which can engender dramatical changes in the properties of molecules. Such changes include enhanced thermal stability and binding affin-ity to targets. A few attempts have been made to synthesize DNA-peptide conjugates with cyclic topology and alter their properties; however, there still lacks a generalized method for the fabrication of cyclic DNA-peptide conjugates.
      Herein, I demonstrated that covalent conjugation could be utilized as a means to enable the formation of homogeneous supramolecular system consisting of DNA-peptide conju-gates. Despite the possibility of supramolecular polymerization, the covalent bonding suc-cessfully led to the fabrication of well-defined sub-10-nm nanostructure possibly by reduc-ing the number of degrees of freedom that the supramolecular building blocks need to sam-ple and simplifying the overall assembly process. In celluo experiment showed that supra-molecular deoxyribonucleoprotein (suDNP) with RGD moiety entered HeLa cells express-ing green fluorescent protein (GFP) without the assistance of transfection agents and suc-cessfully downregulated the level of GFP expression by up to 20%, albeit less effective than the lipoplex. However, suDNP was more advantageous than the lipoplex in terms of cyto-toxicity, which is possibly due to the fact that duplexes of programmable stability had a clear advantage over single-stranded DNAs in terms of specificity to the target as verified by PAGE. Further supramolecular controls from this prototype will enable the development of artificial deoxyribonucleoproteins with more sophisticated structures and functions.
      Also, the best placement of reactive groups needed for the thiol-maleimide reaction and copper catalyzed azide-alkyne cycloaddition (CuAAC) in the synthesis of self-assembling DNA-peptide conjugates via solid-phase peptide fragment condensation was investigated. The results showed that CuAAC was more suitable than the thiol-maleimide reaction for the construction of self-assembling DNA-peptide conjugates and that the placement where DNA with azide groups and peptide with alkyne groups were employed gave rise to self-assembling DNA-peptide conjugates in a reasonable yield. Additionally, it seemed that urea-polyacrylamide gel electrophoresis (PAGE) as a purification method effectively suppressed self-assembling propensity and produced better yields than high-performance liquid chro-matography (HPLC). Although urea PAGE may not always be more efficient than HPLC, it was confirmed that urea PAGE can also be employed for the purification of self-assembling DNA-peptide conjugates.
      Lastly, the synthetic method for self-assembling cyclic DNA-peptide conjugates, and dif-ferences between cyclic and linear DNA-peptide conjugates in terms of overall confor-mation, base pairing ability, and self-assembly were demonstrated. It was shown that liquid phase fragment conjugation (LPFC) combined with the thiol-maleimide reaction and Cu-AAC was effective for the fabrication of self-assembling cyclic DNA-peptide conjugates. Cyclization showed a marginal effect on the overall and peptide conformation of DNA-peptide conjugates within the employed peptide sequence. On the other hand, cyclization exerted a great deal of influence on the base pairing ability of DNA-peptide conjugates; lin-ear DNA-peptide conjugates were more capable of base paring than their cyclic counterparts. The self-assembly of DNA-peptide conjugates was considerably affected. Atomic force mi-croscopy and dynamic light scattering analysis showed that linear DNA-peptide conjugates self-assembled into the heterogenous mixture of spherical and cylindrical micelles, whereas cyclic DNA-peptide conjugates self-assembled into homogeneous spherical micelles. Fur-thermore, it was revealed that the debilitated base pairing ability of cyclic DNA-peptide con-jugates was reflected in the self-assembly profiles of the conjugate duplexes; that is, L-duplex self-assembled into a highly dense structure, whereas C-duplex self-assembled into a loose, less associated structure.

      더보기

      참고문헌 (Reference) 논문관계도

      1 DischerD. E.Eisenberg , A., "Polymer Vesicles", Science297 , 967, 2002

      2 Dias , N.Stein , C. A.Antisense Oligonucleotides, "Basic Concepts and Mechanisms", Molecular Cancer Therapy1 , 347, 2002

      3 123 . ZhangK. , et al., "Gels Based on Cyclic Polymers", Journal of the American Chemical Society133 , 4140, 2011

      4 De GreefT. F., "Supramolecular Polymerization", Chemical Reviews109 , 5687, 2009

      5 Mattia , E.Otto , S., "Supramolecular Systems Chemistry", Nature Nanotechnology10 , 111, 2015

      6 BoekemaE. J., "Single Particle Electron Microscopy", Photosynthesis Research102 , 189, al.2009

      7 NielsenP. E.Egholm , M., "An Introduction to Peptide Nucleic Acid", Current Issues in Molecular Biology1 , 89, 1999

      8 HoyleC. E.Bowman , C. N.Thiol-Ene Click Chemistry, "Angewandte Chemie International Edition", 49 , 1540, 2010

      9 BrewerL. R., "Deciphering the Structure of DNA Toroids", Integrative Biology3 , 540, 2011

      10 RobertsT. C. , et al., "Advances in Oligonucleotide Drug Delivery", Nature Review Drug Discovery19 , 673, 2020

      1 DischerD. E.Eisenberg , A., "Polymer Vesicles", Science297 , 967, 2002

      2 Dias , N.Stein , C. A.Antisense Oligonucleotides, "Basic Concepts and Mechanisms", Molecular Cancer Therapy1 , 347, 2002

      3 123 . ZhangK. , et al., "Gels Based on Cyclic Polymers", Journal of the American Chemical Society133 , 4140, 2011

      4 De GreefT. F., "Supramolecular Polymerization", Chemical Reviews109 , 5687, 2009

      5 Mattia , E.Otto , S., "Supramolecular Systems Chemistry", Nature Nanotechnology10 , 111, 2015

      6 BoekemaE. J., "Single Particle Electron Microscopy", Photosynthesis Research102 , 189, al.2009

      7 NielsenP. E.Egholm , M., "An Introduction to Peptide Nucleic Acid", Current Issues in Molecular Biology1 , 89, 1999

      8 HoyleC. E.Bowman , C. N.Thiol-Ene Click Chemistry, "Angewandte Chemie International Edition", 49 , 1540, 2010

      9 BrewerL. R., "Deciphering the Structure of DNA Toroids", Integrative Biology3 , 540, 2011

      10 RobertsT. C. , et al., "Advances in Oligonucleotide Drug Delivery", Nature Review Drug Discovery19 , 673, 2020

      11 DunnM. R., "Analysis of Aptamer Discovery and Technology", Nature Reviews Chemistry1 , 0076, al.2017

      12 Rad-Malekshahi , M. , et al., "Biomedical Applications of Self-Assembling Peptides", Bioconjugate Chemistry27 , 3, 2016

      13 139 . BleczinskiC. F.Richert , C., "Solid-Phase Synthesis of Cyclic Peptide-DNA Hybrids", Organic Letters2 , 1697, 2000

      14 WhiteC. J.Yudin , A. K., "Contemporary Strategies for Peptide Macrocyclization", Nature Chemistry3 , 509, 2011

      15 Dietz , H. , et al., "Folding DNA into Twisted and Curved Nanoscale Shapes", Science325 , 725, 2009

      16 Freeman , R. , et al., "Reversible Self-Assembly of Superstructured Networks", Science362 , 808, 2018

      17 BruistM. F., "al. , Synthesis of a Site-Specific DNA-Binding Peptide", Science235 , 777, 1987

      18 Knudsen , H.Nielsen , P. E., "Antisense Properties of Duplex- and Triplex-Forming Pnas", Nucleic Acids Research24 , 494, 1996

      19 Rosenzweig , B . A.Hamilton , A. D., "Self-Assembly of a Four-Helix Bundle on a DNA Quadruplex", Angewandte Chemie International Edition48 , 2749, 2009

      20 Lee , M. , et al., "Supramolecular Structures from Rod-Coil Block Copolymers", Chemical Reviews101 , 3869, 2001

      21 Kypr , J. , et al., "Circular Dichroism and Conformational Polymorphism of DNA", Nucleic Acids Research37 , 1713, 2009

      22 BurgessN. C., "Modular Design of Self-Assembling Peptide-Based Nanotubes", Journal of the American Chemical Society137 , 10554, 2015

      23 NguyenD. N., "Polymeric Materials for Gene Delivery and DNA Vaccination", Advanced Materials21 , 847, al.2009

      24 153 . HuK. , et al., "Tuning Peptide Self-Assembly by an in-Tether Chiral Center", Science Advances4 , eaar5907, 2018

      25 Ke , Y. , et al., "Three-Dimensional Structures Self-Assembled from DNA Bricks", Science338 , 1177, 2012

      26 CerfE. , et al.Antiparallel Beta-Sheet, "A Signature Structure of the Oligomeric Amyloid Beta-Peptide", Biochemical Journal421 , 415, 2009

      27 Hong , F. , et al., "DNA Origami : Scaffolds for Creating Higher Order Structures", Chemical Reviews117 , 12584, 2017

      28 DouglasS. M. , et al., "Self-Assembly of DNA into Nanoscale Three-Dimensional Shapes", Nature459 , 414, 2009

      29 Peng , S. , et al., "Discrete Molecular Dynamics Simulations of Peptide Aggregation", Physical Review E69 , 041908, 2004

      30 KhanM. N., "Kinetics and Mechanism of the Alkaline Hydrolysis of Maleimide", Journal of Pharmaceutical Sciences73 , 1767, 1984

      31 112 . LeeB. Y., "A New Solvent System for Efficient Synthesis of 1,2,3-Triazoles", Tetrahedron Letters47 , 5105, al.2006

      32 BowermanC. J.Nilsson , B. L., "A Reductive Trigger for Peptide Self-Assembly and Hydrogelation", Journal of the American Chemical Society132 , 9526, 2010

      33 ChanT. R.al., "Polytriazoles as Copper ( I ) -Stabilizing Ligands in Catalysis", Organic Letters6 , 2853.121, 2004

      34 Gerling , T. , et al., "Dynamic DNA Devices and Assemblies Formed by Shape-Complementary", Non-Base Pairing 3d Components347 , 1446, 2015

      35 HartgerinkJ. D.al., "Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers", Science294 , 1684, 2001

      36 DelatorreB. G.al., "Stepwise Solid-Phase Synthesis of Oligonucleotide-Peptide Hybrids", Tetrahedron Letters35 , 2733, 1994

      37 Mastrobattista , E. , et al., "Artificial Viruses : A Nanotechnological Approach to Gene Delivery", Nature Reviews Drug Discovery5 , 115, 2006

      38 ChoiS. J.al., "Differential Self-Assembly Behaviors of Cyclic and Linear Peptides", Biomacromolecules13, 20121991

      39 TungC. H.Stein , S., "Preparation and Applications of Peptide-Oligonucleotide Conjugates", Bioconjugate Chemistry11 , 605, 2000

      40 Schmidt , M. , et al., "Omniligase-1 : A Powerful Tool for Peptide Head-to-Tail Cyclization", Advanced Synthesis & Catalysis359 , 2050, 2017

      41 Venkatesan , N.Kim , B. H., "Peptide Conjugates of Oligonucleotides : Synthesis and Applications", Chemical Reviews106 , 3712, 2006

      42 ConlonJ. M., "Purification of Naturally Occurring Peptides by Reversed-Phase Hplc", Nature Protocol2 , 191, 2007

      43 MerrifieldR. B., "Solid Phase Peptide Synthesis . I . The Synthesis of a Tetrapeptide", Journal of the American Chemical Society85 , 2149, 1963

      44 KonigH. M.Kilbinger , A. F., "Learning from Nature : Beta-Sheet-Mimicking Copolymers Get Organized", Angewandte Chemie International Edition46 , 8334, 2007

      45 HoskinsJ. N.Grayson , S. M., "Synthesis and Degradation Behavior of Cyclic Poly ( ΕCaprolactone )", Macromolecules42 , 6406, 2009

      46 Lei , J. , et al., "The Antimicrobial Peptides and Their Potential Clinical Applications", American Journal of Translational Research11 , 3919, 2019

      47 Luger , K. , et al., "Crystal Structure of the Nucleosome Core Particle at 2.8 ? Resolution", Nature389 , 251, 1997

      48 138 . MorrM. , et al., "Cyclic Peptide-Nucleotide Hybrids ( CPNH ) with Phosphoramidate Bonds", Tetrahedron55 , 2985, 1999

      49 Lim , Y . B.al., "Filamentous Artificial Virus from a Self-Assembled Discrete Nanoribbon", Angewandte Chemie International Edition47 , 4525, 2008

      50 Ischakov , R. , et al., "Peptide-Based Hydrogel Nanoparticles as Effective Drug Delivery Agents", Bioorganic & Medicinal Chemistry21 , 3517, 2013

      51 Hernandez-Garcia , A. , et al., "Design and Self-Assembly of Simple Coat Proteins for Artificial Viruses", Nature Nanotechnology9 , 698, 2014

      52 FongL. K., "The Role of Structural Enthalpy in Spherical Nucleic Acid Hybridization", Journal of the American Chemical Society140 , 6226, al.2018

      53 ZubinE. M., "Modern Methods for the Synthesis of Peptide ? Oligonucleotide Conjugates", Russian Chemical Reviews71 , 239, al.2002

      54 GhadiriM. R., "Self-Assembling Organic Nanotubes Based on a Cyclic Peptide Architecture", Nature366 , 324, al.1993

      55 GhadiriM. R., "Self-Assembling Organic Nanotubes Based on a Cyclic Peptide Architecture", Nature372 , 709, al.1994

      56 Sugimoto , N. , et al., "Thermodynamic Parameters to Predict Stability of RNA/DNA Hybrid Duplexes", Biochemistry34 , 11211, 1995

      57 ZhouW. H.Theranostic Dnazymes, "2. Zhou, W. H., et al., Theranostic Dnazymes. Theranostics 2017, 7, 1010.", al.Theranostics7 , 1010, 2017

      58 RaginA. D., "Cellular Import Mediated by Nuclear Localization Signal Peptide Sequences", Cell Chemical Biology9 , 943, al.2002

      59 CunninghamA. D., "Peptides and Peptidomimetics as Regulators of Protein-Protein Interactions", Current Opinion in Structural Biology44 , 59, al.2017

      60 LiangS. I.al., "A Modular Approach for Assembling Aldehyde-Tagged Proteins on DNA Scaffolds", Journal of the American Chemical Society136 , 10850, 2014

      61 Humenik , M.Scheibel , T., "Nanomaterial Building Blocks Based on Spider SilkOligonucleotide Conjugates", ACS Nano8 , 1342, 2014

      62 Gupta , N. , et al., "A Versatile Approach to High-Throughput Microarrays Using Thiol-Ene Chemistry", Nature Chemistry2 , 138, 2010

      63 Kovacic , S. , et al., "Construction and Characterization of Kilobasepair Densely Labeled Peptide-DNA", Biomacromolecules15 , 4065, 2014

      64 JeongW. J.al., "Multiplexing Natural Orientation : Oppositely Directed Self-Assembling Peptides", Biomacromolecules15 , 2138, 2014

      65 JeongW. J.al., "Chameleon-Like Self-Assembling Peptides for Adaptable Biorecognition Nanohybrids", ACS Nano7 , 6850, 2013

      66 GoodmanR. P., "Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular Nanofabrication", Science310 , 1661, al.2005

      67 KuijpersW. H. A.VanboeckelC. A . A., "A New Strategy for the Solid-Phase Synthesis of 5'-Thiolated Oligodeoxynucleotides", Tetrahedron49 , 10931, 1993

      68 Peyrottes , S. , et al., "The Synthesis of Peptide-Oligonucleotide Conjugates by a Fragment Coupling Approach", Tetrahedron54 , 12513, 1998

      69 AlemdarogluF. E., "al. , DNA Block Copolymer Micelles - a Combinatorial Tool for Cancer Nanotechnology", Advanced Materials20 , 899, 2008

      70 HudakyP. , et al., "The Differential Specificity of Chymotrypsin A and B Is Determined by Amino Acid 226", European Journal of Biochemistry259 , 528, 1999

      71 Park , W. , et al., "A Stochastic Kinematic Model of Class Averaging in Single-Particle Electron Microscopy", The International Journal of Robotics Research30 , 730, 2011

      72 Han , S. , et al., "Cell-Penetrating Cross-Beta Peptide Assemblies with Controlled Biodegradable Properties", Biomacromolecules18 , 27, 2017

      73 ShiH. H.al. , A Review, "Fabrications , Detections and Applications of Peptide Nucleic Acids ( PNAs ) Microarray", Biosensors & Bioelectronics66 , 481, 2015

      74 RushA. M., "Nuclease-Resistant DNA Via High-Density Packing in Polymeric Micellar Nanoparticle Coronas", ACS Nano7 , 1379, al.2013

      75 BongartzJ. P., "Improved Biological Activity of Antisense Oligonucleotides Conjugated to a Fusogenic Peptide", Nucleic Acids Research22 , 4681, al.1994

      76 HerediaK. L., "In situ Preparation of Protein- '' Smart '' Polymer Conjugates with Retention of Bioactivity", Journal of the American Chemical Society127 , 16955, al.2005

      77 SalimM. , et al., "Amphiphilic Designer Nano-Carriers for Controlled Release : From Drug Delivery to Diagnostics", Medicinal Chemistry Communications5 , 1602, 2014

      78 95 . StephanopoulosN. , et al., 134 . StephanopoulosN. , et al., "Bioactive DNA-Peptide Nanotubes Enhance the Differentiation of Neural Stem Cells into Neurons", Nano Letters15 , 603, 2015

      79 FisherS. A., "Designing Peptide and Protein Modified Hydrogels : Selecting the Optimal Conjugation Strategy", Journal of the American Chemical Society139 , 7416, al.2017

      80 Ding , K. , et al., "Engineering the Structural Properties of DNA Block Copolymer Micelles by Molecular Recognition", Angewandte Chemie International Edition46 , 1172, 2007

      81 JeongW. J.Lim , Y . B., "Macrocyclic Peptides Self-Assemble into Robust Vesicles with Molecular Recognition Capabilities", Bioconjugate Chemistry25, 20141996

      82 ZhangS. G., "Spontaneous Assembly of a Self-Complementary Oligopeptide to Form a Stable Macroscopic Membrane", Proceedings of the National Academy of Sciences of the United States of America90 , 3334, al.1993

      83 Chotera , A. , et al., "Functional Assemblies Emerging in Complex Mixtures of Peptides and Nucleic Acid-Peptide Chimeras", Chemistry-A European Journal10128, 2018

      84 89 . LouC. , et al., "Folding Topology of a Short Coiled-Coil Peptide Structure Templated by an Oligonucleotide Triplex", Chemistry23 , 9297, 2017

      85 ChiuY. L.al., "Visualizing a Correlation between Sirna Localization , Cellular Uptake , and RNAi in Living Cells", Cell Chemical Biology11 , 1165, 2004

      86 Sugimoto , N. , et al., "Improved Thermodynamic Parameters and Helix Initiation Factor to Predict Stability of DNA Duplexes", Nucleic Acids Research24 , 4501, 1996

      87 VardevanyanP. O., "The Binding of Ethidium Bromide with DNA : Interaction with Single- and Double-Stranded Structures", Experimental & Molecular Medicine35 , 527, al.2003

      88 Kuznetsova , S. , et al., "Gene Activation by Triplex-Forming Oligonucleotide Coupled to the Activating Domain of Protein Vp16", Nucleic Acids Research27 , 3995, 1999

      89 UlijnR. V.Woolfson , D. N., "Peptide and Protein Based Materials in 2010 : From Design and Structure to Function and Application", Chemical Society Reviews39 , 3349, 2010

      90 Lim , Y . B., "Recent Advances in Functional Supramolecular Nanostructures Assembled from Bioactive Building Blocks", Chemical Society Reviews38 , 925, al.2009

      91 Hirota , N. , et al., "Cooperative Alpha-Helix Formation of Beta-Lactoglobulin and Melittin Induced by Hexafluoroisopropanol", Protein Science6 , 416, 1997

      92 AlamM. R., "al. , Intracellular Delivery of an Anionic Antisense Oligonucleotide Via Receptor-Mediated Endocytosis", Nucleic Acids Research36 , 2764, 2008

      93 OverstreetM. G.al., "Inflammation-Induced Interstitial Migration of Effector Cd4 ( + ) T Cells Is Dependent on Integrin Alphav", Nature Immunology14 , 949, 2013

      94 Heo , K. , et al., "Structural Characteristics of Amphiphilic Cyclic and Linear Block Copolymer Micelles in Aqueous Solutions", ACS Macro Letters3 , 233, 2014

      95 Meldal , M.Tornoe , C. W.Cu-Catalyzed Azide-Alkyne Cycloaddition, "109. Meldal, M.; Tornoe, C. W., Cu-Catalyzed Azide-Alkyne Cycloaddition. Chemical Reviews 2008, 108, 2952.", Chemical Reviews108 , 2952, 2008

      96 ZantaM. A.al., "Gene Delivery : A Single Nuclear Localization Signal Peptide Is Sufficient to Carry DNA to the Cell Nucleus", Proceedings of the National Academy of Sciences of the United States of America96 , 91, 1999

      97 LiB. S., "Tuning the Chain Helicity and Organizational Morphology of an L-ValineContaining Polyacetylene by pH Change", Nano Letters1 , 323, al.2001

      98 Wenska , M. , et al., "An Activated Triple Bond Linker Enables 'Click ' Attachment of Peptides to Oligonucleotides on Solid Support", Nucleic Acids Research39 , 9047, 2011

      99 TruffertJ. C.al., "Purification and Characterization of Two PeptideOligonucleotide Conjugates as Potential Artificial Nucleases", Tetrahedron52 , 3005, Synthesis1996

      100 JanssenB. M. G., "Reversible Blocking of Antibodies Using Bivalent Peptide-DNA Conjugates Allows Protease-Activatable Targeting", Chemical Science4 , 1442, al.2013

      101 Flierl , A. , et al., "Targeted Delivery of DNA to the Mitochondrial Compartment Via Import Sequence-Conjugated Peptide Nucleic Acid", Molecular Therapy7 , 550, 2003

      102 Soukchareun , S. , et al., "Preparation and Characterization of Antisense Oligonucleotide Peptide Hybrids Containing Viral Fusion Peptides", Bioconjugate Chemistry6 , 43, 1995

      103 154 . JensenG. V., "Monitoring the Transition from Spherical to Polymer-Like Surfactant Micelles Using Small-Angle X-Ray Scattering", Angewandte Chemie International Edition53 , 11524, al.2014

      104 105 . EdeN. J., "Routine Preparation of Thiol Oligonucleotides - Application to the Synthesis of Oligonucleotide-Peptide Hybrids", Bioconjugate Chemistry5 , 373, al.1994

      105 TaoD. , et al., "Mechanistic Study of the Formation of Fiber-Like Micelles with a PiConjugated Oligo ( p-Phenylenevinylene ) Core", Journal of Colloid and Interface Science560 , 50.124, 2020

      106 JeongW. J.al.Helix StabilizedThermostable, "Protease-Resistant Self-Assembled Peptide Nanostructures as Potential Inhibitors of Protein-Protein Interactions", Biomacromolecules14 , 2684, 2013

      107 XueR. , et al., "Hfip-Induced Structures and Assemblies of the Peptides from the Transmembrane Domain 4 of Membrane Protein Nramp1", Biopolymers84 , 329, 2006

      108 KwonS. h.al., "Nanomorphological Diversity of Self-Assembled Cyclopeptisomes Investigated Via Thermodynamic and Kinetic Controls", Macromolecules49 , 7426, 2016

      109 Zhou , G. , et al., "Photocleavable Peptide-Oligonucleotide Conjugates for Protein Kinase Assays by MALDI-TOF MS. Molecular BioSystems", 8 , 2395, 2012

      110 Li , C. , et al., "Rapid Formation of a Supramolecular Polypeptide-DNA Hydrogel for in Situ Three-Dimensional Multilayer Bioprinting", Angewandte Chemie International Edition54 , 3957, 2015

      111 150 . NafisiS. , et al., "Stability and Structural Features of DNA Intercalation with Ethidium Bromide , Acridine Orange and Methylene Blue", Journal of Molecular Structure827 , 35, 2007

      112 Gazit , E., "Self-Assembled Peptide Nanostructures : The Design of Molecular Building Blocks and Their Technological Utilization", Chemical Society Reviews36 , 1263, 2007

      113 RahbaniJ. F., "Dynamic DNA Nanotubes : Reversible Switching between Single and Double-Stranded Forms , and Effect of Base Deletions", ACS Nano9 , 11898, al.2015

      114 GhoshP. S.Hamilton , A. D., "Noncovalent Template-Assisted Mimicry of Multiloop Protein Surfaces : Assembling Discontinuous and Functional Domains", Journal of the American Chemical Society134 , 13208, 2012

      115 YeD. , et al., "Bioorthogonal Cyclization-Mediated In Situ Self-Assembly of Small-Molecule Probes for Imaging Caspase Activity in Vivo", Nature Chemistry6 , 519, 2014

      116 Kye , M.Lim , Y . B., 136 . KyeM.Lim , Y . B., "Reciprocal Self-Assembly of Peptide-DNA Conjugates into a Programmable Sub-10-nm Supramolecular Deoxyribonucleoprotein", Angewandte Chemie International Edition55 , 12003, 2016

      117 LouC. G.al., "Peptide-Oligonucleotide Conjugates as Nanoscale Building Blocks for Assembly of an Artificial Three-Helix Protein Mimic", Nature Communications7 , 12294, 2016

      118 SieminskiA. L., "al. , Primary Sequence of Ionic Self-Assembling Peptide Gels Affects Endothelial Cell Adhesion and Capillary Morphogenesis", Journal of Biomedical Materials Research Part A87a , 494, 2008

      119 Vysabhattar , R.Ganesh , K. N., "In Situ , on-Resin Synthesis of 8-Br/Nh2 Adeninyl Peptide Nucleic Acid ( PNA ) Oligomers and Complementation Studies with DNA", Tetrahedron Letters51 , 6560, 2010

      120 Kye , M.Lim , Y . B., "Synthesis and Purification of Self-Assembling Peptide-Oligonucleotide Conjugates by Solid-Phase Peptide Fragment Condensation", Journal of Peptide Science24 , e3092, 2018

      121 PresolskiS. I., "Tailored Ligand Acceleration of the Cu-Catalyzed Azide-Alkyne Cycloaddition Reaction : Practical and Mechanistic Implications", Journal of the American Chemical Society132 , 14570, al.2010

      122 VolkmannG. , et al., "Intein-Mediated Cyclization of Bacterial Acyl Carrier Protein Stabilizes Its Folded Conformation but Does Not Abolish Function", Journal of Biological Chemistry285 , 8605, 2010

      123 LeeM. K.Lim , Y . B., "Facile Synthesis , Optical and Conformational Characteristics , and Efficient Intracellular Delivery of a Peptide-DNA Conjugate", Bioorganic & Medicinal Chemistry22 , 4204, 2014

      124 WancewiczE. V., "Peptide Nucleic Acids Conjugated to Short Basic Peptides Show Improved Pharmacokinetics and Antisense Activity in Adipose Tissue", Journal of Medicinal Chemistry53 , 3919, al.2010

      125 117 . ZatsepinT. S., "Synthesis of Peptide-Oligonucleotide Conjugates with Single and Multiple Peptides Attached to 2 '-Aldehydes through Thiazolidine", Oxime , and Hydrazine Linkages . Bioconjugate Chemistry13 , 822, al.2002

      126 121 . BednarR. A., "Reactivity and pH-Dependence of Thiol Conjugation to N-Ethylmaleimide - Detection of a Conformational Change in Chalcone Isomerase", Biochemistry29 , 3684, 1990

      127 TurnerJ. J.al., "Cell-Penetrating Peptide Conjugates of Peptide Nucleic Acids ( PNA ) as Inhibitors of HIV-1 Tat-Dependent Trans-Activation in Cells", Nucleic Acids Research33 , 6837, 2005

      128 GetzE. B., "A Comparison between the Sulfhydryl Reductants Tris ( 2- Carboxyethyl ) Phosphine and Dithiothreitol for Use in Protein Biochemistry", Analytical Biochemistry273 , 73, al.1999

      129 137 . MacCullochT. , et al., "Emerging Applications of Peptide-Oligonucleotide Conjugates : Bioactive Scaffolds , Self-Assembling Systems , and Hybrid Nanomaterials", Organic & Biomolecular Chemistry17 , 1668, 2019

      130 Zhao , D. , et al., "Engineering Functional DNA-Protein Conjugates for Biosensing , Biomedical , and Nanoassembly Applications . Topics in Current Chemistry", 378 , 41, 2020

      131 LiK. , et al., "Impact of Cyclic Topology : Odd ? Even Glass Transition Temperatures and Fluorescence Quantum Yields in Molecularly-Defined Macrocycles", Polymer Chemistry8 , 2686, 2017

      132 GogoiK. , et al., "A Versatile Method for the Preparation of Conjugates of Peptides with DNA/PNA/Analog by Employing Chemo-Selective Click Reaction in Water", Nucleic Acids Research35 , e139, 2007

      133 Pfaff , M. , et al., "Selective Recognition of Cyclic RGD Peptides of NMR Defined Conformation by Alpha-II-Beta-3 , Alpha-V-Beta-3 , and Alpha-5-Beta-1 Integrins", Journal of Biological Chemistry269 , 20233, 1994

      134 Raouane , M. , et al., "Synthesis , Characterization , and in Vivo Delivery of Sirna-Squalene Nanoparticles Targeting Fusion Oncogene in Papillary Thyroid Carcinoma", Journal of Medicinal Chemistry54 , 4067, 2011

      135 AumailleyM. , et al., "Arg-Gly-Asp Constrained within Cyclic Pentapeptides - Strong and Selective Inhibitors of Cell-Adhesion to Vitronectin and Laminin Fragment-P1", FEBS Letters291 , 50, 1991

      136 BeggG. E.Speicher , D. W., "Mass Spectrometry Detection and Reduction of Disulfide Adducts between Reducing Agents and Recombinant Proteins with Highly Reactive Cysteines", Journal of Biomolecular Techniques10 , 17, 1999

      137 Gour , N. , et al., "Self-Assembling DNA-Peptide Hybrids : Morphological Consequences of Oligonucleotide Grafting to a Pathogenic Amyloid Fibrils Forming Dipeptide", Chemical Community48 , 5440, 2012

      138 JeongW. J.al., "Tuning Oligovalent Biomacromolecular Interfaces Using Double-Layered Alpha-Helical Coiled-Coil Nanoassemblies from Lariat-Type Building Blocks", ACS Macro Letters5 , 1406, 2016

      139 152 . WangX. , et al., "Comparative Study of Solution Properties of Amphiphilic 8-Shaped Cyclic- ( Polystyrene-b-Poly ( Acrylic Acid ) ) ( 2 ) and its Linear Precursor", Macromolecules47 , 2487, 2014

      140 Kisiday , J. , et al., "Self-Assembling Peptide Hydrogel Fosters Chondrocyte Extracellular Matrix Production and Cell Division : Implications for Cartilage Tissue Repair", Proceedings of the National Academy of Sciences of the United States of America99 , 9996, 2002

      141 WangL. X., "Carbohydrate-Centered Maleimide Cluster as a New Type of Templates for Multivalent Peptide Assembling . Synthesis of Multivalent HIV-1 gp41 Peptides", Bioorganic & Medicinal Chemistry11 , 159, al.2003

      142 Han , S. , et al., "Structural and Conformational Dynamics of Self-Assembling Bioactive BetaSheet Peptide Nanostructures Decorated with Multivalent RNA-Binding Peptides", Journal of the American Chemical Society134 , 16047, 2012

      143 Zhou , P. , et al., "Generation of Hydrogen Peroxide and Hydroxyl Radical Resulting from Oxygen-Dependent Oxidation of L-Ascorbic Acid via Copper Redox-Catalyzed Reactions", RSC Advances6 , 38541, 2016

      144 TornoeC. W.al., "Peptidotriazoles on Solid Phase : [ 1,2,3 ] -Triazoles by Regiospecific Copper ( I ) -Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides", Journal of Organic Chemistry67 , 3057, 2002

      145 SedelnikovaO . A., "Sequence-Specific Gene Cleavage in Intact Mammalian Cells by 125I-Labeled Triplex-Forming Oligonucleotides Conjugated with Nuclear Localization Signal Peptide", Antisense and Nucleic Acid Drug Development12 , 43, al.2002

      146 FraleyA. W.al., 142 . FraleyA. W.al., "Cationic Oligonucleotide-Peptide Conjugates with Aggregating Properties Enter Efficiently into Cells While Maintaining Hybridization Properties and Enzymatic Recognition", Journal of the American Chemical Society128 , 10763, 2006

      147 ZhangB. , et al., "Exploring the Effect of Amphiphilic Polymer Architecture : Synthesis , Characterization , and Self-Assembly of Both Cyclic and Linear Poly ( Ethylene Gylcol ) -bPolycaprolactone", ACS Macro Letters2 , 845, 2013

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼