RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      변환된 자기회귀이동평균 모형에서의 예측구간추정 = Prediction Interval Estimation in Ttansformed ARMA Models

      한글로보기

      https://www.riss.kr/link?id=A105150034

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      One of main aspects of time series analysis is to forecast future values of series based on values up to a given time. The prediction interval for future values is usually obtained under the normality assumption. When the assumption is seriously violated, a transformation of data may permit the valid use of the normal theory. We investigate the prediction problem for future values in the original scale when transformations are applied in ARMA models. In this paper, we introduce the methodology based on Yeo-Johnson transformation to solve the problem of skewed data whose modelling is relatively difficult in the analysis of time series. Simulation studies show that the coverage probabilities of proposed intervals are closer to the nominal level than those of usual intervals.
      번역하기

      One of main aspects of time series analysis is to forecast future values of series based on values up to a given time. The prediction interval for future values is usually obtained under the normality assumption. When the assumption is seriously viola...

      One of main aspects of time series analysis is to forecast future values of series based on values up to a given time. The prediction interval for future values is usually obtained under the normality assumption. When the assumption is seriously violated, a transformation of data may permit the valid use of the normal theory. We investigate the prediction problem for future values in the original scale when transformations are applied in ARMA models. In this paper, we introduce the methodology based on Yeo-Johnson transformation to solve the problem of skewed data whose modelling is relatively difficult in the analysis of time series. Simulation studies show that the coverage probabilities of proposed intervals are closer to the nominal level than those of usual intervals.

      더보기

      참고문헌 (Reference)

      1 "Value at risk based on the volatility skewness and kurtosis" RiskMetrics Group 1999

      2 "The behavior of stock-market prices The Journal of Business" 1965

      3 "Probability distribution for ?nancial models" 14 : 427-461, 1996

      4 "Journal of the American Statistical Association" 1983

      5 "Grouped likelihood for the shifted power transformation Journal of the Royal Statistical Society" 1991

      6 "Financial applications of stable distribution" 14 : 393-425, 1996

      7 "Convex Transformations of Random Variables" 1964

      8 "Conditional heteroskedasticity in asset returns" eco (eco): 1991

      9 "Bias and convergence rate of the coverage probability of prediction intervals in Box-Cox transformed linear models" 136 : 3614-3624, 2005

      10 "An analysis of transformations Journal of the Royal Statistical Society" 1964

      1 "Value at risk based on the volatility skewness and kurtosis" RiskMetrics Group 1999

      2 "The behavior of stock-market prices The Journal of Business" 1965

      3 "Probability distribution for ?nancial models" 14 : 427-461, 1996

      4 "Journal of the American Statistical Association" 1983

      5 "Grouped likelihood for the shifted power transformation Journal of the Royal Statistical Society" 1991

      6 "Financial applications of stable distribution" 14 : 393-425, 1996

      7 "Convex Transformations of Random Variables" 1964

      8 "Conditional heteroskedasticity in asset returns" eco (eco): 1991

      9 "Bias and convergence rate of the coverage probability of prediction intervals in Box-Cox transformed linear models" 136 : 3614-3624, 2005

      10 "An analysis of transformations Journal of the Royal Statistical Society" 1964

      11 "A new family of power transformation to improve normality or symmetry" 87 : 954-959, 2000

      12 "A further development of tests for normality" 1930

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2000-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.38 0.38 0.38
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.35 0.34 0.565 0.17
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼