RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      고품질의 3D 콘텐츠 제작을 위한 베이지안 접근방식의 사진측량기반 편위수정기법 개발

      한글로보기

      https://www.riss.kr/link?id=A99680510

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper proposes a photogrammetric rectification method based on Bayesian approach as a method that eliminates vertical parallax between stereo images to minimize visual fatigue of 3D contents. The image rectification consists of two phases; geometry estimation and epipolar transformation. For geometry estimation, coplanarity-based relative orientation algorithm was used in this paper. To ensure robustness for mismatch and localization error occurred by automation of tie point extraction, Bayesian approach was applied by introducing several prior constraints. As epipolar transformation perspective transformation was used based on condition of collinearity to minimize distortion of result images and modification for input images. Other algorithms were compared to evaluate performance. For geometry estimation, traditional relative orientation algorithm, 8-points algorithm and stereo calibration algorithm were employed. For epipolar transformation, Hartley algorithm and Bouguet algorithm were employed. The evaluation results showed that the proposed algorithm produced results with high accuracy, robustness about error sources and minimum image modification.
      번역하기

      This paper proposes a photogrammetric rectification method based on Bayesian approach as a method that eliminates vertical parallax between stereo images to minimize visual fatigue of 3D contents. The image rectification consists of two phases; geomet...

      This paper proposes a photogrammetric rectification method based on Bayesian approach as a method that eliminates vertical parallax between stereo images to minimize visual fatigue of 3D contents. The image rectification consists of two phases; geometry estimation and epipolar transformation. For geometry estimation, coplanarity-based relative orientation algorithm was used in this paper. To ensure robustness for mismatch and localization error occurred by automation of tie point extraction, Bayesian approach was applied by introducing several prior constraints. As epipolar transformation perspective transformation was used based on condition of collinearity to minimize distortion of result images and modification for input images. Other algorithms were compared to evaluate performance. For geometry estimation, traditional relative orientation algorithm, 8-points algorithm and stereo calibration algorithm were employed. For epipolar transformation, Hartley algorithm and Bouguet algorithm were employed. The evaluation results showed that the proposed algorithm produced results with high accuracy, robustness about error sources and minimum image modification.

      더보기

      참고문헌 (Reference)

      1 김재인, "입체영상 제작을 위한 비정렬 스테레오 영상의 정밀편위수정" 한국방송공학회 17 (17): 411-421, 2012

      2 R. I. Hartley, "Theory and practice of projective rectification" 35 (35): 115-127, 1999

      3 H. Kim, "Technical trend of stereoscopic content production" 26 (26): 13-24, 2011

      4 M. A. Fischler, "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography" 24 (24): 381-395, 1981

      5 J. Mallon, "Projective rectification from the fundamental matrix" 23 (23): 643-650, 2005

      6 "OpenCV library"

      7 R. I. Hartley, "Multiple View Geometry in Computer Vision" Cambridge University Press 2003

      8 B. Yeu, "Modern Digital Photogrammetry" Pearson Education Korea 2003

      9 R. I. Hartley, "In defence of the eight-point algorithm" 1064-1070, 1995

      10 D. G. Lowe, "Distinctive image features from scale-invariant keypoints" 60 (60): 91-110, 2004

      1 김재인, "입체영상 제작을 위한 비정렬 스테레오 영상의 정밀편위수정" 한국방송공학회 17 (17): 411-421, 2012

      2 R. I. Hartley, "Theory and practice of projective rectification" 35 (35): 115-127, 1999

      3 H. Kim, "Technical trend of stereoscopic content production" 26 (26): 13-24, 2011

      4 M. A. Fischler, "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography" 24 (24): 381-395, 1981

      5 J. Mallon, "Projective rectification from the fundamental matrix" 23 (23): 643-650, 2005

      6 "OpenCV library"

      7 R. I. Hartley, "Multiple View Geometry in Computer Vision" Cambridge University Press 2003

      8 B. Yeu, "Modern Digital Photogrammetry" Pearson Education Korea 2003

      9 R. I. Hartley, "In defence of the eight-point algorithm" 1064-1070, 1995

      10 D. G. Lowe, "Distinctive image features from scale-invariant keypoints" 60 (60): 91-110, 2004

      11 K. A. Al-Shalfan, "Direct algorithm for rectifying pairs of uncalibrated images" 36 (36): 419-420, 2000

      12 C. Loop, "Computing rectifying homographies for stereo vision" 1 : 125-131, 1999

      13 D. C. Brown, "Close-range camera calibration" 37 (37): 855-866, 1971

      14 J. Grodecki, "Block adjustment of high-resolution satellite images described by rational polynomials" 69 (69): 59-68, 2003

      15 Y.-S. Kang, "An efficient image rectification method for parallel multi-camera arrangement" 57 (57): 1041-1048, 2011

      16 Z. Zhang, "A flexible new technique for camera calibration" 22 (22): 1330-1334, 2000

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-01-15 학회명변경 한글명 : 한국방송공학회 -> 한국방송∙미디어공학회
      영문명 : The Korean Society Of Broadcast Engineers -> The Korean Institute of Broadcast and Media Engineers
      KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2006-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2004-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.38 0.38 0.34
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.32 0.27 0.526 0.14
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼