RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE

      The Study of Variational Feed Rate in 4-Axis Machining of Blades

      한글로보기

      https://www.riss.kr/link?id=A105906667

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      As a core part of aerospace, space, and steam turbine plants, blades are generally machined via 5-axis linkage processing to satisfy the high precision requirements of the rigorous surface. To save costs in blade machining, many small- and medium-sized enterprises often combine standard 3-axis computer numeric control machines with the automatic indexing turntable. The traditional 4-axis machining method adopts a constant feed rate, which causes overcutting near the leading and trailing edges of the blade because of the rapid changes in tool orientation. To solve this problem, we propose a speed optimization method that utilizes variational speed to ensure that the decomposition velocity and acceleration of each axis do not exceed the allowable values. First, we guarantee the correct tool lead angle. Second, a corrected speed model is established to obtain the component speed of each axis and to determine the constraint conditions of maximum and accelerated speed. Third, a 4-axis post processor for blade processing is developed using Java advanced language combined with the optimization algorithm. The cutting experiment reveals that our proposed speed optimization method effectively controls the precision of the surface profile and overcomes the overcut phenomenon that often occurs in traditional 4-axis machining.
      번역하기

      As a core part of aerospace, space, and steam turbine plants, blades are generally machined via 5-axis linkage processing to satisfy the high precision requirements of the rigorous surface. To save costs in blade machining, many small- and medium-size...

      As a core part of aerospace, space, and steam turbine plants, blades are generally machined via 5-axis linkage processing to satisfy the high precision requirements of the rigorous surface. To save costs in blade machining, many small- and medium-sized enterprises often combine standard 3-axis computer numeric control machines with the automatic indexing turntable. The traditional 4-axis machining method adopts a constant feed rate, which causes overcutting near the leading and trailing edges of the blade because of the rapid changes in tool orientation. To solve this problem, we propose a speed optimization method that utilizes variational speed to ensure that the decomposition velocity and acceleration of each axis do not exceed the allowable values. First, we guarantee the correct tool lead angle. Second, a corrected speed model is established to obtain the component speed of each axis and to determine the constraint conditions of maximum and accelerated speed. Third, a 4-axis post processor for blade processing is developed using Java advanced language combined with the optimization algorithm. The cutting experiment reveals that our proposed speed optimization method effectively controls the precision of the surface profile and overcomes the overcut phenomenon that often occurs in traditional 4-axis machining.

      더보기

      참고문헌 (Reference)

      1 Tournier, C., "Tool Path Generation and Post-Processor Issues in Five-Axis High Speed Machining of Hydro Turbine Blades" 5 (5): 565-576, 2006

      2 Morishige, K., "Tool Path Generation Using C-Space for 5-Axis Control Machining" 121 (121): 144-149, 1999

      3 Ren, J., "Tool Axis Orientation Planning Method of Fixed Axis in Each Cutting Line for Closed Blisk Tunnel Five-Axis Machining" 33 (33): 1923-1930, 2012

      4 Roman, A., "Three-Half and Half-Axis Patch-by-Patch NC Machining of Sculptured Surfaces" 29 (29): 524-531, 2006

      5 Shan, C.-W., "Three Half-Axis Tool Orientation Optimization for Spiral Machining of Blades" 68 (68): 2601-2609, 2013

      6 Yuen, A., "Smooth Trajectory Generation for Five-Axis Machine Tools" 71 : 11-19, 2013

      7 조현덕, "Ruled Surface로 형성된 임펠러 블레이드 전용 CAD/CAM시스템 개발 II(5-축 가공에 관한 연구)" 한국생산제조학회 11 (11): 1-7, 2002

      8 Li, K., "Research on Method of 5-Axis NC Rough Machining of Turbine Blade" 27 (27): 505-508, 2006

      9 Lavernhe, S., "Optimization of 5-Axis High-Speed Machining Using a Surface Based Approach" 40 (40): 1015-1023, 2008

      10 Chiou, J. C., "Optimal Tool Orientation for Five-Axis Tool-End Machining by Swept Envelope Approach" 127 (127): 810-818, 2005

      1 Tournier, C., "Tool Path Generation and Post-Processor Issues in Five-Axis High Speed Machining of Hydro Turbine Blades" 5 (5): 565-576, 2006

      2 Morishige, K., "Tool Path Generation Using C-Space for 5-Axis Control Machining" 121 (121): 144-149, 1999

      3 Ren, J., "Tool Axis Orientation Planning Method of Fixed Axis in Each Cutting Line for Closed Blisk Tunnel Five-Axis Machining" 33 (33): 1923-1930, 2012

      4 Roman, A., "Three-Half and Half-Axis Patch-by-Patch NC Machining of Sculptured Surfaces" 29 (29): 524-531, 2006

      5 Shan, C.-W., "Three Half-Axis Tool Orientation Optimization for Spiral Machining of Blades" 68 (68): 2601-2609, 2013

      6 Yuen, A., "Smooth Trajectory Generation for Five-Axis Machine Tools" 71 : 11-19, 2013

      7 조현덕, "Ruled Surface로 형성된 임펠러 블레이드 전용 CAD/CAM시스템 개발 II(5-축 가공에 관한 연구)" 한국생산제조학회 11 (11): 1-7, 2002

      8 Li, K., "Research on Method of 5-Axis NC Rough Machining of Turbine Blade" 27 (27): 505-508, 2006

      9 Lavernhe, S., "Optimization of 5-Axis High-Speed Machining Using a Surface Based Approach" 40 (40): 1015-1023, 2008

      10 Chiou, J. C., "Optimal Tool Orientation for Five-Axis Tool-End Machining by Swept Envelope Approach" 127 (127): 810-818, 2005

      11 Suh, S.-H., "Multiaxis Machining with Additional-Axis NC System: Theory and Development" 14 (14): 865-875, 1998

      12 Kappmeyer, G., "Modern Machining of Advanced Aerospace Alloys-Enabler for Quality and Performance" 1 : 28-43, 2012

      13 Tulsyan, S., "Local Toolpath Smoothing for Five-Axis Machine Tools" 96 : 15-26, 2015

      14 Lee, C. S., "Generation of 5-Axis NC Data for Machining Turbine Blades by Controlling the Heel Angle" 4 (4): 110-120, 1996

      15 Wang, N., "Five-Axis Tool Path Generation for a Flat-End Tool Based on Iso-Conic Partitioning" 40 (40): 1067-1079, 2008

      16 Suh, S.-H., "Five-Axis Part Machining with Three-Axis CNC Machine and Indexing Table" 120 (120): 120-128, 1998

      17 Gassara, B., "Feed Rate Modeling in Circular-Circular Interpolation Discontinuity for High-Speed Milling" 65 (65): 1619-1634, 2013

      18 Calleja, A., "Feed Rate Calculation Algorithm for the Homogeneous Material Deposition of Blisk Blades by 5-Axis Laser Cladding" 74 (74): 1219-1228, 2014

      19 Sencer, B., "Feed Optimization for Five-Axis CNC Machine Tools with Drive Constraints" 48 (48): 733-745, 2008

      20 Gomes, J. d. O., "Evaluation of 5-Axis HSC Dynamic Behavior when Milling TiAl6V4 Blades" 32 (32): 208-217, 2010

      21 Heo, E.-Y., "Efficient Rough-Cut Plan for Machining an Impeller with a 5-Axis NC Machine" 21 (21): 971-983, 2008

      22 Jung, H.-C., "Development of Practical Postprocessor for 5-Axis Machine Tool with Non-Orthogonal Rotary Axes" 18 (18): 159-164, 2011

      23 Chen, Z. C., "Automated Surface Subdivision and Tool Path Generation for 31212-Axis CNC Machining of Sculptured Parts" 50 (50): 319-331, 2003

      24 Gray, P. J., "Arc-Intersect Method for 31212-Axis Tool Paths on a 5-Axis Machine" 47 (47): 182-190, 2007

      25 Ridwan, F., "Adaptive Execution of an NC Program with Feed Rate Optimization" 63 (63): 1117-1130, 2012

      26 황종대, "A Study on the Development of Post Processor for Five- Axis Machining using Angle Head Spindle" 한국정밀공학회 16 (16): 2683-2689, 2015

      27 Shan, C.-W., "A Novel Spiral Machining Approach for Blades Modeled with Four Patches" 43 (43): 563-572, 2009

      28 Beudaert, X., "5-Axis Tool Path Smoothing Based on Drive Constraints" 51 (51): 958-965, 2011

      29 Beudaert, X., "5-Axis Local Corner Rounding of Linear Tool Path Discontinuities" 73 : 9-16, 2013

      30 Mori, M., "5 Axis Mill Turn and Hybrid Machining for Advanced Application" 1 : 22-27, 2012

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-06-23 학회명변경 영문명 : Korean Society Of Precision Engineering -> Korean Society for Precision Engineering KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-05-30 학술지명변경 한글명 : 한국정밀공학회 영문논문집 -> International Journal of the Korean of Precision Engineering KCI등재후보
      2005-05-30 학술지명변경 한글명 : International Journal of the Korean of Precision Engineering -> International Journal of Precision Engineering and Manufacturing
      외국어명 : International Journal of the Korean of Precision Engineering -> International Journal of Precision Engineering and Manufacturing
      KCI등재후보
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.38 0.71 1.08
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.92 0.85 0.583 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼