RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      On the Distribution of a Statistic Used for Detecting First-Order Serial Correlation

      한글로보기

      https://www.riss.kr/link?id=A101601660

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper provides a simple methodology for approximating the distribution of a test statistic proposed by J. Durbin and G. S. Watson. After expressing the statistic as a ratio of quadratic forms, its exact moments are evaluated by making use of a recursive formula. Its density function is then approximated by a beta density function multiplied by a linear combination of Jacobi orthogonal polynomials. The coefficients of the linear combination are determined by making use of a moment-based methodology. An integral representation of the moments of the statistic under the alternative hypothesis is also provided. As verified by a simulation study, the approach used in this paper, which takes into account the observation matrix of explanatory variables associated with the assumed regression model, yields very accurate critical values for testing independence versus first-order serial correlation.
      번역하기

      This paper provides a simple methodology for approximating the distribution of a test statistic proposed by J. Durbin and G. S. Watson. After expressing the statistic as a ratio of quadratic forms, its exact moments are evaluated by making use of a re...

      This paper provides a simple methodology for approximating the distribution of a test statistic proposed by J. Durbin and G. S. Watson. After expressing the statistic as a ratio of quadratic forms, its exact moments are evaluated by making use of a recursive formula. Its density function is then approximated by a beta density function multiplied by a linear combination of Jacobi orthogonal polynomials. The coefficients of the linear combination are determined by making use of a moment-based methodology. An integral representation of the moments of the statistic under the alternative hypothesis is also provided. As verified by a simulation study, the approach used in this paper, which takes into account the observation matrix of explanatory variables associated with the assumed regression model, yields very accurate critical values for testing independence versus first-order serial correlation.

      더보기

      참고문헌 (Reference)

      1 정형철, "스플라인 회귀를 활용한 소표본 등화" 한국자료분석학회 6 (6): 825-835, 2004

      2 강창완, "붓스트랩방법을 이용한 음이항분포 모수 k의 추정" 한국자료분석학회 5 (5): 519-526, 2003

      3 정병철, "붓스트랩 방법을 이용한 분산의 신뢰구간 추정" 한국자료분석학회 7 (7): 871-878, 2005

      4 Theil, H., "Testing the independence of regression disturbances" 56 (56): 793-806, 1961

      5 Henshaw, R. C., "Testing single-equation least squares regression methods for autocorrelated disturbances" 34 (34): 646-660, 1966

      6 Durbin, J., "Testing for serial correlation in least squares regression: I" 37 (37): 409-428, 1950

      7 Hannan, E. J., "Testing for serial correlation in least squares regression" 44 (44): 57-66, 1957

      8 Durbin, J., "Testing for serial Correlation in least squares regression: III" 58 (58): 1-19, 1971

      9 Lieberman, O., "Saddlepoint approximation for the distribution of a ratio of quadratic forms in normal variables" 89 (89): 924-928, 1994

      10 Mathai, A. M., "Quadratic Forms in Random Variables, Theory and Applications, Marcel Dekker Inc" New York 1992

      1 정형철, "스플라인 회귀를 활용한 소표본 등화" 한국자료분석학회 6 (6): 825-835, 2004

      2 강창완, "붓스트랩방법을 이용한 음이항분포 모수 k의 추정" 한국자료분석학회 5 (5): 519-526, 2003

      3 정병철, "붓스트랩 방법을 이용한 분산의 신뢰구간 추정" 한국자료분석학회 7 (7): 871-878, 2005

      4 Theil, H., "Testing the independence of regression disturbances" 56 (56): 793-806, 1961

      5 Henshaw, R. C., "Testing single-equation least squares regression methods for autocorrelated disturbances" 34 (34): 646-660, 1966

      6 Durbin, J., "Testing for serial correlation in least squares regression: I" 37 (37): 409-428, 1950

      7 Hannan, E. J., "Testing for serial correlation in least squares regression" 44 (44): 57-66, 1957

      8 Durbin, J., "Testing for serial Correlation in least squares regression: III" 58 (58): 1-19, 1971

      9 Lieberman, O., "Saddlepoint approximation for the distribution of a ratio of quadratic forms in normal variables" 89 (89): 924-928, 1994

      10 Mathai, A. M., "Quadratic Forms in Random Variables, Theory and Applications, Marcel Dekker Inc" New York 1992

      11 Cambanis, S., "On the theory of elliptically contoured distributions" 11 (11): 368-385, 1981

      12 Provost, S. B, "Moment-based density approximants" 9 (9): 727-756, 2005

      13 Hildreth, C., "Demand Relations with Auto-Correlated Disturbances, East Lansing, Michigan: Michigan State University, Agricultural Experiment Station, Department of Agricultural Economics" 276 : 1960

      14 Johnson, N. L., "Continuous Univariate Distributions-2" Wiley 1994

      15 김대학, "Bootstrap Prediction Interval estimator of SVM" 한국자료분석학회 6 (6): 655-662, 2004

      16 Smith, P. J, "A recursive formulation of the old problem of obtaining moments from cumulants and vice versa" 49 (49): 217-219, 1995

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.26 1.26 1.15
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.05 0.98 0.956 0.4
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼