Various oxide films are commonly used as a sacrificial layer or etch mask in the fabrication of microelectromechanical systems (MEMS). Large residual strain of these oxide films causes the wafer to bow, which can have detrimental effects on photolitho...
Various oxide films are commonly used as a sacrificial layer or etch mask in the fabrication of microelectromechanical systems (MEMS). Large residual strain of these oxide films causes the wafer to bow, which can have detrimental effects on photolithography and other ensuing processes. This paper investigates the residual strain of tetraethoxysilane (TEOS), low temperature oxide (LTO), 7 wt% and 10 wt% phosphosilicate glass (PSG). Euler beams and a bent-beam strain sensor are used to measure the residual strain. A poly silicon layer is used as the sacrificial layer, which is selectively etched away by $XeF_2$. First, the residual strain of as-deposited films is measured, which is quite large. The residual strain of the films is also measured after annealing them not only at $500^{\circ}C$, $600^{\circ}C$, $700^{\circ}$ and $800^{\circ}C$ in $N_2$ environment for 1 hour but also at the conditions for depositing a $2\;{\mu}m$ thick polysilicon at $585^{\circ}C$ and $625^{\circ}C$. Our results show that the 7 wt% PSG is best suited as the sacrificial layer for $2\;{\mu}$ thick polysilicon processes.