RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      사전 학습된 한국어 BERT의 전이학습을 통한 한국어 기계독해 성능개선에 관한 연구

      한글로보기

      https://www.riss.kr/link?id=A107140820

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Language Models such as BERT has been an important factor of deep learning-based natural language processing. Pre-training the transformer-based language models would be computationally expensive since they are consist of deep and broad architecture and layers using an attention mechanism and also require huge amount of data to train. Hence, it became mandatory to do fine-tuning large pre-trained language models which are trained by Google or some companies can afford the resources and cost.
      There are various techniques for fine tuning the language models and this paper examines three techniques, which are data augmentation, tuning the hyper paramters and partly re-constructing the neural networks. For data augmentation, we use no-answer augmentation and back-translation method. Also, some useful combinations of hyper parameters are observed by conducting a number of experiments. Finally, we have GRU, LSTM networks to boost our model performance with adding those networks to BERT pre-trained model.
      We do fine-tuning the pre-trained korean-based language model through the methods mentioned above and push the F1 score from baseline up to 89.66. Moreover, some failure attempts give us important lessons and tell us the further direction in a good way.
      번역하기

      Language Models such as BERT has been an important factor of deep learning-based natural language processing. Pre-training the transformer-based language models would be computationally expensive since they are consist of deep and broad architecture a...

      Language Models such as BERT has been an important factor of deep learning-based natural language processing. Pre-training the transformer-based language models would be computationally expensive since they are consist of deep and broad architecture and layers using an attention mechanism and also require huge amount of data to train. Hence, it became mandatory to do fine-tuning large pre-trained language models which are trained by Google or some companies can afford the resources and cost.
      There are various techniques for fine tuning the language models and this paper examines three techniques, which are data augmentation, tuning the hyper paramters and partly re-constructing the neural networks. For data augmentation, we use no-answer augmentation and back-translation method. Also, some useful combinations of hyper parameters are observed by conducting a number of experiments. Finally, we have GRU, LSTM networks to boost our model performance with adding those networks to BERT pre-trained model.
      We do fine-tuning the pre-trained korean-based language model through the methods mentioned above and push the F1 score from baseline up to 89.66. Moreover, some failure attempts give us important lessons and tell us the further direction in a good way.

      더보기

      참고문헌 (Reference)

      1 Clark, K., "What Does BERT Look At? An Analysis of BERT’s Attention" Stanford University

      2 Wang, R., "To Tune or not tune? How about the best of both worlds?" Percent Group, AI Lab

      3 Ying, A., "Really Paying Attention : A BERT+ BiDAF Ensemble Model for Question-Answering" Standford University

      4 Mohammadi, M., "Natural Language Processing With Deep Learning" Stanford University

      5 임승영, "KorQuAD : 기계독해를 위한 한국어 질의응답 데이터셋" 539-541, 2018

      6 Marivate, V., "Improving short text classification through global augmentation methods" 385-399, 2019

      7 Sun, C., "How To Fine-Tune BERT For Text Classification?" Fudan University

      8 Ethayarajh, K., "How Contextual Are Contextualised Word Representations? Comparing The Geometry of Bert, Elmo, And Gpt2" Stanford University

      9 Dodge, J., "Fine-Tuning Pretrained Language Models : Weight Initializations, Data Orders, and Early Stopping" Cornell University

      10 Qin, Z., "Diverse Ensembling with Bert and its variations for Question Answering on SQuAD 2.0"

      1 Clark, K., "What Does BERT Look At? An Analysis of BERT’s Attention" Stanford University

      2 Wang, R., "To Tune or not tune? How about the best of both worlds?" Percent Group, AI Lab

      3 Ying, A., "Really Paying Attention : A BERT+ BiDAF Ensemble Model for Question-Answering" Standford University

      4 Mohammadi, M., "Natural Language Processing With Deep Learning" Stanford University

      5 임승영, "KorQuAD : 기계독해를 위한 한국어 질의응답 데이터셋" 539-541, 2018

      6 Marivate, V., "Improving short text classification through global augmentation methods" 385-399, 2019

      7 Sun, C., "How To Fine-Tune BERT For Text Classification?" Fudan University

      8 Ethayarajh, K., "How Contextual Are Contextualised Word Representations? Comparing The Geometry of Bert, Elmo, And Gpt2" Stanford University

      9 Dodge, J., "Fine-Tuning Pretrained Language Models : Weight Initializations, Data Orders, and Early Stopping" Cornell University

      10 Qin, Z., "Diverse Ensembling with Bert and its variations for Question Answering on SQuAD 2.0"

      11 Yang, W., "Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering"

      12 Kobayashi, S., "Contextual Augmentation : Data Augmentation By Words With Paradigmatic Relations" Preferred Networks, Inc.

      13 Lalande, K.M., "CS224n Final Project : SQuAD 2.0 with BERT"

      14 Semnani, J.S., "BERTA : Fine-tuning BERT with Adapters and Data Augmentation" Standford University

      15 Devlin, J., "BERT : Pre-training of Deep Bidirectional Transformers for Language Understanding, Google AI Language"

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2014-05-28 학술지명변경 외국어명 : Journal of the Korea Society of IT Services -> Journal of Information Technology Services KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2009-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2008-01-01 평가 등재후보학술지 유지 (등재후보2차) KCI등재후보
      2007-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2006-08-11 학술지명변경 한글명 : 한국SI학회지 -> 한국IT서비스학회지
      외국어명 : Journal of the Korea Society of System Integration -> Journal of the Korea Society of IT Services
      KCI등재후보
      2006-08-11 학회명변경 한글명 : 한국SI학회 -> 한국IT서비스학회
      영문명 : Korea Society Of System Integration -> Korea Society Of IT Services
      KCI등재후보
      2006-06-21 학회명변경 한글명 : 한국SI학회 -> 한국IT서비스학회
      영문명 : Korea Society Of System Integration -> Korea Society Of IT Services
      KCI등재후보
      2005-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.49 0.49 0.5
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.48 0.47 0.627 0.17
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼