RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Calculating the Threshold Energy of the Pulsed Laser Sintering of Silver and Copper Nanoparticles

      한글로보기

      https://www.riss.kr/link?id=A103663168

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      In this study, in order to analyze the low-temperature sintering process of silver and copper nanoparticles,we calculate their melting temperatures and surface melting temperatures with respect to particle size. Forthis calculation, we introduce the concept of mean-squared displacement of the atom proposed by Shi(1994). Using a parameter defined by the vibrational component of melting entropy, we readily obtainedthe surface and bulk melting temperatures of copper and silver nanoparticles. We also calculated theabsorption cross-section of nanoparticles for variation in the wavelength of light. By using the calculatedabsorption cross-section of the nanoparticles at the melting temperature, we obtained the laser thresholdenergy for the sintering process with respect to particle size and wavelength of laser. We found that theabsorption cross-section of silver nanoparticles has a resonant peak at a wavelength of close to 350 nm,yielding the lowest threshold energy. We calculated the intensity distribution around the nanoparticles usingthe finite-difference time-domain method and confirmed the resonant excitation of silver nanoparticles nearthe wavelength of the resonant peak.
      번역하기

      In this study, in order to analyze the low-temperature sintering process of silver and copper nanoparticles,we calculate their melting temperatures and surface melting temperatures with respect to particle size. Forthis calculation, we introduce the c...

      In this study, in order to analyze the low-temperature sintering process of silver and copper nanoparticles,we calculate their melting temperatures and surface melting temperatures with respect to particle size. Forthis calculation, we introduce the concept of mean-squared displacement of the atom proposed by Shi(1994). Using a parameter defined by the vibrational component of melting entropy, we readily obtainedthe surface and bulk melting temperatures of copper and silver nanoparticles. We also calculated theabsorption cross-section of nanoparticles for variation in the wavelength of light. By using the calculatedabsorption cross-section of the nanoparticles at the melting temperature, we obtained the laser thresholdenergy for the sintering process with respect to particle size and wavelength of laser. We found that theabsorption cross-section of silver nanoparticles has a resonant peak at a wavelength of close to 350 nm,yielding the lowest threshold energy. We calculated the intensity distribution around the nanoparticles usingthe finite-difference time-domain method and confirmed the resonant excitation of silver nanoparticles nearthe wavelength of the resonant peak.

      더보기

      참고문헌 (Reference)

      1 F. A. Lindemann, "Über die Berechnung molekularer Eigenfrequenzen" 11 : 609-612, 1910

      2 P. R. Couchman, "Thermodynamic theory of size dependence of melting temperature in metals" 269 : 481-483, 1977

      3 K. S. Moon, "Thermal behavior of silver nanoparticles for low-temperature interconnect applications" 34 : 168-175, 2005

      4 C. R. M. Wronski, "The size dependence of the melting point of small particles of tin" 18 : 1731-1737, 1967

      5 Z. Wen, "The melting temperature of molecular nanocrystals at the lower bound of the mesoscopic size range" 12 : 8819-8824, 2000

      6 K. K. Nanda, "Size-dependent melting of nanoparticles:Hundred years of thermodynamic model" 72 : 617-628, 2009

      7 Q. Jiang, "Size effect on the phase stability of nanostructures" 4 : 179-200, 2008

      8 J. S. Kang, "Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light" 40 : 2268-2277, 2011

      9 En-Kyul Yu, "Sintering Behavior of Copper Nanoparticles" 대한화학회 32 (32): 4099-4102, 2011

      10 Q. Huang, "Roomtemperature sintering of conductive Ag films on paper" 123 : 124-127, 2014

      1 F. A. Lindemann, "Über die Berechnung molekularer Eigenfrequenzen" 11 : 609-612, 1910

      2 P. R. Couchman, "Thermodynamic theory of size dependence of melting temperature in metals" 269 : 481-483, 1977

      3 K. S. Moon, "Thermal behavior of silver nanoparticles for low-temperature interconnect applications" 34 : 168-175, 2005

      4 C. R. M. Wronski, "The size dependence of the melting point of small particles of tin" 18 : 1731-1737, 1967

      5 Z. Wen, "The melting temperature of molecular nanocrystals at the lower bound of the mesoscopic size range" 12 : 8819-8824, 2000

      6 K. K. Nanda, "Size-dependent melting of nanoparticles:Hundred years of thermodynamic model" 72 : 617-628, 2009

      7 Q. Jiang, "Size effect on the phase stability of nanostructures" 4 : 179-200, 2008

      8 J. S. Kang, "Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light" 40 : 2268-2277, 2011

      9 En-Kyul Yu, "Sintering Behavior of Copper Nanoparticles" 대한화학회 32 (32): 4099-4102, 2011

      10 Q. Huang, "Roomtemperature sintering of conductive Ag films on paper" 123 : 124-127, 2014

      11 유준호, "Rapid Sintering of Copper Nano Ink Using a Laser in Air" 한국정밀공학회 15 (15): 1051-1054, 2014

      12 Z. Z. Zhang, "Pressure-assisted low-temperature sintering of silver paste as an alternative die-attach solution to solder reflow" 25 : 279-283, 2002

      13 S. A. Maier, "Plasmonics : fundamentals and applications" Springer 2007

      14 A. D. Rakić, "Optical properties of metallic films for verticalcavity optoelectronic devices" 37 : 5271-5283, 1998

      15 P. B. Johnson, "Optical constants of the noble metals" 6 : 4370-4379, 1972

      16 M. D. Malinsky, "Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles" 105 : 2343-2350, 2001

      17 N. Guo, "Nanoparticle, size, shape, and interfacial effects on leakage current density, permittivity, and breakdown strength of metal oxide-polyolefin nanocomposites:experiment and theory" 22 : 1567-1578, 2010

      18 A. P. Chernyshev, "Melting of surface layers of nanoparticles:Landau model" 112 : 226-229, 2008

      19 I. Shishkovsky, "Low-dose laser sintering of cu nanoparticles on the ceramic substrate during ink-jet interconnection" 9065 : 906501-1-906501-6, 2014

      20 H. Yu, "Low temperature sintering of Zn1.8SiO3.8 dielectric ceramics containing 3ZnO-2B2O3 glass" 179 : 150-153, 2016

      21 T. Kumpulainen, "Low temperature nanoparticle sintering with continuous wave and pulse lasers" 43 : 570-576, 2011

      22 F. P. Incropera, "Introduction to heat transfer" John Wiley & Sons 2007

      23 H. S. Kim, "Intense pulsed light sintering of copper nanoink for printed electronics" 97 : 791-798, 2009

      24 J. S. Kang, "Inkjet printed electronics using copper nanoparticle ink" 21 : 1213-1220, 2010

      25 J. Perelaer, "Ink-jet printing and microwave sintering of conductive silver tracks" 18 : 2101-2104, 2006

      26 Q. Jiang, "Free energy of crystal-liquid interface" 47 : 2109-2112, 1999

      27 J. Lee, "Enhanced surface coverage and conductivity of cu complex ink-coated films by laser sintering" 564 : 264-268, 2014

      28 A. P. Chernyshev, "Effect of nanoparticle size on the onset temperature of surface melting" 63 : 1525-1527, 2009

      29 변경민, "Development of Nanostructured Plasmonic Substrates for Enhanced Optical Biosensing" 한국광학회 14 (14): 65-76, 2010

      30 V. E. Ferry, "Design consideration for plasmonic photovoltaics" 22 : 4794-4808, 2010

      31 J. Guo, "Cold sintering: A paradigm shift for processing and integration of ceramics" 128 : 11629-11633, 2016

      32 G. P. Wiederrecht, "Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles" 4 : 2121-2125, 2004

      33 S. C. Hendy, "A thermodynamic model for the melting of supported metal nanoparticles" 18 : 175703-1-175703-4, 2007

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2017-02-03 학술지명변경 한글명 : Journal of the Optical Society of Korea -> Current Optics and Photonics
      외국어명 : Journal of the Optical Society of Korea -> Current Optics and Photonics
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-02 학술지명변경 한글명 : Journal of Optical Society of Korea -> Journal of the Optical Society of Korea
      외국어명 : Journal of Optical Society of Korea -> Journal of the Optical Society of Korea
      KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.67 0.24 0.55
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.48 0.43 0.383 0.02
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼