RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Highly Birefringent and Dispersion Compensating Photonic Crystal Fiber Based on Double Line Defect Core

      한글로보기

      https://www.riss.kr/link?id=A103663166

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      We propose a highly birefringent and dispersion compensating photonic crystal fiber based on a doubleline defect core. Using a finite element method (FEM) with a perfectly matched layer (PML), it isdemonstrated that it is possible to obtain broadband large negative dispersion of about -400 to -427ps/(nm.km) covering all optical communication bands (from O to U band) and to achieve the dispersioncoefficient of -425 ps/(nm.km) at 1.55μm. In addition, the highest birefringence of the proposed PCF at1.55 μm is 1.92 × 10-2 and the value of birefringence from the wavelength of 1.26 to 1.8 μm (coveringO to U bands) is about 1.8 × 10-2 to 1.92 × 10-2. It is confirmed that from the simulation results, theconfinement loss of the proposed PCF is always less than 10-3 dB/km at 1.55 μm with seven fiber ringsof air holes in the cladding.
      번역하기

      We propose a highly birefringent and dispersion compensating photonic crystal fiber based on a doubleline defect core. Using a finite element method (FEM) with a perfectly matched layer (PML), it isdemonstrated that it is possible to obtain broadband ...

      We propose a highly birefringent and dispersion compensating photonic crystal fiber based on a doubleline defect core. Using a finite element method (FEM) with a perfectly matched layer (PML), it isdemonstrated that it is possible to obtain broadband large negative dispersion of about -400 to -427ps/(nm.km) covering all optical communication bands (from O to U band) and to achieve the dispersioncoefficient of -425 ps/(nm.km) at 1.55μm. In addition, the highest birefringence of the proposed PCF at1.55 μm is 1.92 × 10-2 and the value of birefringence from the wavelength of 1.26 to 1.8 μm (coveringO to U bands) is about 1.8 × 10-2 to 1.92 × 10-2. It is confirmed that from the simulation results, theconfinement loss of the proposed PCF is always less than 10-3 dB/km at 1.55 μm with seven fiber ringsof air holes in the cladding.

      더보기

      참고문헌 (Reference)

      1 J. Canning, "Wavelength dependent leakage in a Fresnel-based air silica structured optical fibre" 205 : 95-99, 2002

      2 D. Chen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss" 19 : 185-187, 2007

      3 Soan Kim, "Ultrahigh birefringence of elliptic core fiber with irregular air holes" 101 : 016101-, 2007

      4 F. Poli, "Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers" 16 : 1065-1067, 2004

      5 F. Couny, "Squarelattice large pitch hollow-core photonic crystal fiber" 16 : 20626-20636, 2008

      6 Y. D. Hazan, "Sol-gel method of making an optical fiber with multiple apertures"

      7 R. T. Bise, "Sol-gel derived microstructured fiber: fabrication and characterization" 2005

      8 K. Saitoh, "Single-polarization single-mode photonic crystal fibers" 15 : 1384-1386, 2003

      9 F. Poli, "Single-mode regime of square-lattice photonic crystal fibers" 22 : 1655-1661, 2005

      10 F. Orlando, "Recent Advances in High-Birefringence Fiber Loop Mirror Sensors" 7 : 2970-2983, 2007

      1 J. Canning, "Wavelength dependent leakage in a Fresnel-based air silica structured optical fibre" 205 : 95-99, 2002

      2 D. Chen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss" 19 : 185-187, 2007

      3 Soan Kim, "Ultrahigh birefringence of elliptic core fiber with irregular air holes" 101 : 016101-, 2007

      4 F. Poli, "Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers" 16 : 1065-1067, 2004

      5 F. Couny, "Squarelattice large pitch hollow-core photonic crystal fiber" 16 : 20626-20636, 2008

      6 Y. D. Hazan, "Sol-gel method of making an optical fiber with multiple apertures"

      7 R. T. Bise, "Sol-gel derived microstructured fiber: fabrication and characterization" 2005

      8 K. Saitoh, "Single-polarization single-mode photonic crystal fibers" 15 : 1384-1386, 2003

      9 F. Poli, "Single-mode regime of square-lattice photonic crystal fibers" 22 : 1655-1661, 2005

      10 F. Orlando, "Recent Advances in High-Birefringence Fiber Loop Mirror Sensors" 7 : 2970-2983, 2007

      11 Md. S. Habib, "Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber" 19 : 461-467, 2013

      12 J. Ju, "Properties of a highly birefringent photonic crystal fiber" 15 : 1375-1377, 2003

      13 J. Noda, "Polarization maintaining fibers and their applications" 4 : 1071-1089, 1986

      14 R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers" 15 : 1157-1160, 1979

      15 J. C. Knight, "Photonic crystal fibres" 424 : 847-851, 2003

      16 J. C. Knight, "Photonic crystal fibers:New way to guide light" 296 : 276-277, 2002

      17 L. Zhang, "Photonic crystal fibers with squeezed hexagonal lattice" 12 : 2371-2376, 2004

      18 R. Buczynski, "Photonic crystal fibers" 106 : 141-167, 2004

      19 J. C. Knight, "Photonic band gap guidance in optical fibers" 282 : 1476-1478, 1998

      20 J. C. Knight, "Nonlinear waveguide optics and photonic crystal fibers" 15 : 15365-15376, 2007

      21 A. Ferrando, "Nearly zero ultraflattened dispersion in photonic crystal fibers" 25 : 790-792, 2000

      22 W. Wang, "Investigation of high birefringence and negative dispersion photonic crystal fiber with hybrid crystal lattice" 124 : 2901-2903, 2013

      23 F. Poletti, "Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers" 13 : 3728-3736, 2005

      24 김소은, "Hybrid Square-Lattice Photonic Crystal Fiber with Broadband Single-Mode Operation, High Birefringence, and Normal Dispersion" 한국광학회 19 (19): 449-455, 2015

      25 H. Ademgil, "Highly birefringent photonic crystal fibers with ultralow chromatic dispersion and low confinement losses" 26 : 441-448, 2008

      26 A. Ortigosa-Blanch, "Highly birefringent photonic crystal fibers" 25 : 1325-1327, 2000

      27 T. P. Hansen, "Highly birefringent index-guiding photonic crystal fibers" 13 : 588-590, 2001

      28 P. Klocek, "Handbook of infrared Optical Materials" Marcel Dekker 1991

      29 P. Falkenstein, "Fused preforms for the fabrication of photonic crystal fibers" 29 : 1858-1860, 2004

      30 K. M. Kiang, "Extruded single mode non-silica glass holey optical fibres" 38 : 546-547, 2002

      31 T. A. Birks, "Endlessly single-mode photonic crystal fiber" 22 : 961-963, 1997

      32 M. J. Steel, "Elliptical-hole photonic crystal fibers" 26 : 229-231, 2001

      33 R. Buczynksi, "Double-core photonic crystal fiber with square lattice" 5450 : 223-230, 2004

      34 A. M. Vengsarkar, "Dispersion-compensating single-mode fibers: efficient designs for first- and second-order compensation" 18 : 924-926, 1993

      35 A. H. Bouk, "Dispersion properties of square-lattice photonic crystal fibers" 12 : 941-946, 2004

      36 T. Matsui, "Dispersion compensation over all the telecommunication bands with doublecladding photonic crystal fiber" 25 : 757-762, 2007

      37 M. A. Islam, "Design optimization of equiangular spiral photonic crystal fiber for large negative flat dispersion and high birefringence" 30 : 3545-3551, 2012

      38 M. Karimi, "Design evaluation of a high birefringence single mode optical fiber-based sensor for lateral pressure monitoring applications" 13 : 4459-4464, 2013

      39 W. H. Reeves, "Demonstration of ultra-flattened dispersion in photonic crystal fibers" 10 : 609-613, 2002

      40 K. Saitoh, "Chromatic dispersion control in photonic crystal fibers: application to ultraflattened dispersion" 11 : 843-852, 2003

      41 P. Song, "Birefringence characteristics of squeezed lattice photonic crystal fiber" 25 : 1771-1776, 2007

      42 J. C. Knight, "All-silica single-mode optical fiber with photonic crystal cladding" 21 : 1547-1549, 1996

      43 Kubota, "Absolutely single polarization photonic crystal fiber" 16 : 182-184, 2004

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2017-02-03 학술지명변경 한글명 : Journal of the Optical Society of Korea -> Current Optics and Photonics
      외국어명 : Journal of the Optical Society of Korea -> Current Optics and Photonics
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-02 학술지명변경 한글명 : Journal of Optical Society of Korea -> Journal of the Optical Society of Korea
      외국어명 : Journal of Optical Society of Korea -> Journal of the Optical Society of Korea
      KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.67 0.24 0.55
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.48 0.43 0.383 0.02
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼