RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      개념간 관계의 추출과 명명을 위한 통계적 접근방법 = A Statistical Approach for Extracting and Miming Relation between Concepts

      한글로보기

      https://www.riss.kr/link?id=A101434965

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      The ontology was proposed to construct the logical basis of semantic web. Ontology represents domain knowledge in the formal form and it enables that machine understand domain knowledge and provide appropriate intelligent service for user request. However, the construction and the maintenance of ontology requires large amount of cost and human efforts. This paper proposes an automatic ontology construction method for defining relation between concepts in the documents. The Proposed method works as following steps. First we find concept pairs which compose association rule based on the concepts in domain specific documents. Next, we find pattern that describes the relation between concepts by clustering the context between two concepts composing association rule. Last, find generalized pattern name by clustering the clustered patterns. To verify the proposed method, we extract relation between concepts and evaluate the result using documents set provide by TREC(Text Retrieval Conference). The result shows that proposed method cant provide useful information that describes relation between concepts.
      번역하기

      The ontology was proposed to construct the logical basis of semantic web. Ontology represents domain knowledge in the formal form and it enables that machine understand domain knowledge and provide appropriate intelligent service for user request. How...

      The ontology was proposed to construct the logical basis of semantic web. Ontology represents domain knowledge in the formal form and it enables that machine understand domain knowledge and provide appropriate intelligent service for user request. However, the construction and the maintenance of ontology requires large amount of cost and human efforts. This paper proposes an automatic ontology construction method for defining relation between concepts in the documents. The Proposed method works as following steps. First we find concept pairs which compose association rule based on the concepts in domain specific documents. Next, we find pattern that describes the relation between concepts by clustering the context between two concepts composing association rule. Last, find generalized pattern name by clustering the clustered patterns. To verify the proposed method, we extract relation between concepts and evaluate the result using documents set provide by TREC(Text Retrieval Conference). The result shows that proposed method cant provide useful information that describes relation between concepts.

      더보기

      국문 초록 (Abstract) kakao i 다국어 번역

      온톨로지는 차세대 시맨틱 웹을 위한 논리의 기반을 구성하기 위해 제안되었다. 이러한 온톨로지는 특정 분야에 대한 지식을 정형화된 형태로 표현함으로써 기계에 의한 지식의 이해를 가능하게 하고, 이를 사용하여 사용자의 요구에 알맞은 지능화된 서비스를 제공할 수 있게 한다. 하지만, 온톨로지의 구축과 유지는 많은 사람의 시간과 노력을 요구한다. 본 고에서는 온톨로지 구축 방법의 일환으로, 문서로부터 온톨로지를 구성하는 개념간의 관계를 정의하는 자동화된 방법을 제안한다. 본 고에서 제안된 방법은 특정 분야의 문서에 존재하는 개념을 기반으로 개념간의 연관 규칙을 형성하는 개념 쌍을 찾고, 두 개념 사이에 존재하는 내용의 군집화를 통해 두 개념간의 관계를 설명하는 패턴을 찾는다. 마지막으로 패턴간의 군집화를 사용하여 개념 사이의 일반화된 관계를 명시한다. 본 고에서는 제안된 방법을 검증하기 위한 방법으로 TREC(Text REtrieval Conference)에서 제공하는 문서집합을 사용하여 개념간의 관계를 추출, 평가하였으며, 그 결과 제안된 방법은 개념간의 관계를 설명하는 유용한 정보를 제공할 수 있음을 보여준다.
      번역하기

      온톨로지는 차세대 시맨틱 웹을 위한 논리의 기반을 구성하기 위해 제안되었다. 이러한 온톨로지는 특정 분야에 대한 지식을 정형화된 형태로 표현함으로써 기계에 의한 지식의 이해를 가...

      온톨로지는 차세대 시맨틱 웹을 위한 논리의 기반을 구성하기 위해 제안되었다. 이러한 온톨로지는 특정 분야에 대한 지식을 정형화된 형태로 표현함으로써 기계에 의한 지식의 이해를 가능하게 하고, 이를 사용하여 사용자의 요구에 알맞은 지능화된 서비스를 제공할 수 있게 한다. 하지만, 온톨로지의 구축과 유지는 많은 사람의 시간과 노력을 요구한다. 본 고에서는 온톨로지 구축 방법의 일환으로, 문서로부터 온톨로지를 구성하는 개념간의 관계를 정의하는 자동화된 방법을 제안한다. 본 고에서 제안된 방법은 특정 분야의 문서에 존재하는 개념을 기반으로 개념간의 연관 규칙을 형성하는 개념 쌍을 찾고, 두 개념 사이에 존재하는 내용의 군집화를 통해 두 개념간의 관계를 설명하는 패턴을 찾는다. 마지막으로 패턴간의 군집화를 사용하여 개념 사이의 일반화된 관계를 명시한다. 본 고에서는 제안된 방법을 검증하기 위한 방법으로 TREC(Text REtrieval Conference)에서 제공하는 문서집합을 사용하여 개념간의 관계를 추출, 평가하였으며, 그 결과 제안된 방법은 개념간의 관계를 설명하는 유용한 정보를 제공할 수 있음을 보여준다.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼