RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      SVM과 의사결정트리를 이용한 혼합형 침입탐지 모델 = The Hybrid Model using SVM and Decision Tree for Intrusion Detection

      한글로보기

      https://www.riss.kr/link?id=A101431534

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      안전한 네트워크의 운영을 함에 있어 네트워크 침입 탐지에서 오탐지율을 줄이고 정탐지율을 높이는 것은 매우 중요한 일이라 할 수 있다. 최근에 얼굴 인식과 생물학 정보칩 분류 등에서 활발히 적용 연구되는 SVM을 침입탐지에 이용하면 실시간 탐지가 가능하므로 탐지율의 향상을 기대할 수 있다. 그러나 기존의 연구에서는 입력값들을 벡터공간에 나타낸 후 계산된 값을 근거로 분류하므로, 이산형의 데이터는 입력 정보로 사용할 수 없다는 단점을 가지고 있다. 따라서 이 논문에서는 의사결정트리를 SVM에 결합시킨 침입 탐지 모델을 제안하고 이에 대한 성능을 평가한 결과 기존 방식에 비해 침입 탐지율, F-P오류율, F-N오류율에 있어 각각 5.5%, 0.16%, 0.82% 향상이 있음을 보였다.
      번역하기

      안전한 네트워크의 운영을 함에 있어 네트워크 침입 탐지에서 오탐지율을 줄이고 정탐지율을 높이는 것은 매우 중요한 일이라 할 수 있다. 최근에 얼굴 인식과 생물학 정보칩 분류 등에서 ...

      안전한 네트워크의 운영을 함에 있어 네트워크 침입 탐지에서 오탐지율을 줄이고 정탐지율을 높이는 것은 매우 중요한 일이라 할 수 있다. 최근에 얼굴 인식과 생물학 정보칩 분류 등에서 활발히 적용 연구되는 SVM을 침입탐지에 이용하면 실시간 탐지가 가능하므로 탐지율의 향상을 기대할 수 있다. 그러나 기존의 연구에서는 입력값들을 벡터공간에 나타낸 후 계산된 값을 근거로 분류하므로, 이산형의 데이터는 입력 정보로 사용할 수 없다는 단점을 가지고 있다. 따라서 이 논문에서는 의사결정트리를 SVM에 결합시킨 침입 탐지 모델을 제안하고 이에 대한 성능을 평가한 결과 기존 방식에 비해 침입 탐지율, F-P오류율, F-N오류율에 있어 각각 5.5%, 0.16%, 0.82% 향상이 있음을 보였다.

      더보기

      다국어 초록 (Multilingual Abstract)

      In order to operate a secure network, it is very important for the network to raise positive detection as well as lower negative detection for reducing the damage from network intrusion. By using SVM on the intrusion detection field, we expect to improve real-time detection of intrusion data. However, due to classification based on calculating values after having expressed input data in vector space by SVM, continuous data type can not be used as any input data. Therefore, we present the hybrid model between SVM and decision tree method to make up for the weak point. Accordingly, we see that intrusion detection rate, F-P error rate, F-N error rate are improved as 5.6%, 0.16%, 0.82%, respectively.
      번역하기

      In order to operate a secure network, it is very important for the network to raise positive detection as well as lower negative detection for reducing the damage from network intrusion. By using SVM on the intrusion detection field, we expect to impr...

      In order to operate a secure network, it is very important for the network to raise positive detection as well as lower negative detection for reducing the damage from network intrusion. By using SVM on the intrusion detection field, we expect to improve real-time detection of intrusion data. However, due to classification based on calculating values after having expressed input data in vector space by SVM, continuous data type can not be used as any input data. Therefore, we present the hybrid model between SVM and decision tree method to make up for the weak point. Accordingly, we see that intrusion detection rate, F-P error rate, F-N error rate are improved as 5.6%, 0.16%, 0.82%, respectively.

      더보기

      참고문헌 (Reference)

      1 "The spectrum kernel: A string kernel for SVM protein classification" 564-575, 2002

      2 "One-Class Training for Masquerade Detection" 2003

      3 "Multi class support vector machine implementation to intrusion detection" 2 : 2002

      4 "Identifying important features for intrusion detection using support vector machines and neural networks" 2003

      5 "Hybrid neural network and C4.5 for misuse detection" 4 : 2463-2467, 2003

      6 "An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods" Cambridge University Press 2000

      1 "The spectrum kernel: A string kernel for SVM protein classification" 564-575, 2002

      2 "One-Class Training for Masquerade Detection" 2003

      3 "Multi class support vector machine implementation to intrusion detection" 2 : 2002

      4 "Identifying important features for intrusion detection using support vector machines and neural networks" 2003

      5 "Hybrid neural network and C4.5 for misuse detection" 4 : 2463-2467, 2003

      6 "An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods" Cambridge University Press 2000

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2012-10-01 평가 학술지 통합(등재유지)
      2010-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2003-01-01 평가 등재학술지 선정(등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS(등재후보1차) KCI등재후보
      2000-07-01 평가 등재후보학술지 선정(신규평가) KCI등재후보
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼