RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      표면 근전도 신호를 이용한 실시간 상지부 동작 예측을 통한 인간-기계 상호작용 = Human-Machine Interaction based on a Real-time Upper Limb Motion Prediction using Surface Electromyography

      한글로보기

      https://www.riss.kr/link?id=A60207906

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 논문은 표면 근전도 신호(sEMG)를 이용해 상지부의 동작을 실시간으로 예측하고 이를 기반으로 한 인간-기계 상호작용(Human-machine interaction)에 관한 것이다. 사용자의 상지부에 위치한 5 곳의 근육에서 수집하는 근전도 신호와 인공신경회로망(arfiticial neural network) 알고리즘을 이용하여 상지부 동작을 실시간으로 예측하였고, 기계팔(manipulator)이 예측된 동작을 좇아 움직이도록 제어되었다. 이때, 사용자가 기계팔의 끝단(end-effector)과 접촉해 있는 상태에서 상지부 동작은 2 차원 평면 위에서 이루어지도록 제한된다. 본 논문이 제안하는 동작 예측 방법과 인체 각도계(goniometer)를 이용한 경우의 상호 작용 실험을 통해, 동작 예측을 통한 인간-기계 상호 작용의 성능을 알아보았다. 실험결과로부터, 제안된 실시간 동작 예측 방법을 이용하여 사용자와 기계의 상호 작용 시스템을 구현할 수 있음을 알 수 있다.
      번역하기

      본 논문은 표면 근전도 신호(sEMG)를 이용해 상지부의 동작을 실시간으로 예측하고 이를 기반으로 한 인간-기계 상호작용(Human-machine interaction)에 관한 것이다. 사용자의 상지부에 위치한 5 곳...

      본 논문은 표면 근전도 신호(sEMG)를 이용해 상지부의 동작을 실시간으로 예측하고 이를 기반으로 한 인간-기계 상호작용(Human-machine interaction)에 관한 것이다. 사용자의 상지부에 위치한 5 곳의 근육에서 수집하는 근전도 신호와 인공신경회로망(arfiticial neural network) 알고리즘을 이용하여 상지부 동작을 실시간으로 예측하였고, 기계팔(manipulator)이 예측된 동작을 좇아 움직이도록 제어되었다. 이때, 사용자가 기계팔의 끝단(end-effector)과 접촉해 있는 상태에서 상지부 동작은 2 차원 평면 위에서 이루어지도록 제한된다. 본 논문이 제안하는 동작 예측 방법과 인체 각도계(goniometer)를 이용한 경우의 상호 작용 실험을 통해, 동작 예측을 통한 인간-기계 상호 작용의 성능을 알아보았다. 실험결과로부터, 제안된 실시간 동작 예측 방법을 이용하여 사용자와 기계의 상호 작용 시스템을 구현할 수 있음을 알 수 있다.

      더보기

      다국어 초록 (Multilingual Abstract)

      This paper presents a human-machine interaction based on a realtime upper limb motion prediction method using surface electromyography (sEMG). The motions were predicted using an artificial neural network algorithm and sEMG signals which are acquired from five muscles, and then a manipulator was controlled to follow after the predicted motions. Upper limb motions were restricted to 2D vertical plane with the contact condition between a user and an end-effector of manipulator. In order to demonstrate the feasibility of the proposed method, experiments using developed method and using a goniometer were performed. The results showed that the proposed real-time motion prediction method can be implemented a human-machine interaction system.
      번역하기

      This paper presents a human-machine interaction based on a realtime upper limb motion prediction method using surface electromyography (sEMG). The motions were predicted using an artificial neural network algorithm and sEMG signals which are acquired ...

      This paper presents a human-machine interaction based on a realtime upper limb motion prediction method using surface electromyography (sEMG). The motions were predicted using an artificial neural network algorithm and sEMG signals which are acquired from five muscles, and then a manipulator was controlled to follow after the predicted motions. Upper limb motions were restricted to 2D vertical plane with the contact condition between a user and an end-effector of manipulator. In order to demonstrate the feasibility of the proposed method, experiments using developed method and using a goniometer were performed. The results showed that the proposed real-time motion prediction method can be implemented a human-machine interaction system.

      더보기

      목차 (Table of Contents)

      • 요약
      • Abstract
      • 1. 서론
      • 2. 시스템 구성
      • 3. 실험 결과 및 고찰
      • 요약
      • Abstract
      • 1. 서론
      • 2. 시스템 구성
      • 3. 실험 결과 및 고찰
      • 4. 결론
      • 참고문헌
      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼