RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Electrochemical methods in soil and water research

      한글로보기

      https://www.riss.kr/link?id=M1067978

      • 저자
      • 발행사항

        Oxford ; New York : Pergamon Press, 1993

      • 발행연도

        1993

      • 작성언어

        영어

      • 주제어
      • DDC

        631.4/1 판사항(20)

      • ISBN

        0080418872 (hc) :

      • 자료형태

        일반단행본

      • 발행국(도시)

        England

      • 서명/저자사항

        Electrochemical methods in soil and water research / T.R. Yu, G.L. Ji ; with the assistance of the staff of the Department of Soil Electrochemistry, Institute of Soil Science, Chinese Academy of Sciences.

      • 판사항

        1st ed

      • 형태사항

        xvi, 462 p. : ill. ; 24 cm.

      • 일반주기명

        Includes bibliographical references and index.

      • 소장기관
        • 경남대학교 중앙도서관 소장기관정보 Deep Link
        • 계명대학교 동산도서관 소장기관정보
        • 고려대학교 과학도서관 소장기관정보 Deep Link
        • 국립중앙도서관 국립중앙도서관 우편복사 서비스
        • 국립한밭대학교 도서관 소장기관정보
        • 대구가톨릭대학교 중앙도서관 소장기관정보
        • 목원대학교 도서관 소장기관정보
        • 이화여자대학교 도서관 소장기관정보 Deep Link
        • 전남대학교 도서관(여수캠퍼스) 소장기관정보
        • 충남대학교 도서관 소장기관정보 Deep Link
        • 충북대학교 도서관 소장기관정보
        • 한양대학교 중앙도서관 소장기관정보
        • 홍익대학교 중앙도서관 소장기관정보
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      목차 (Table of Contents)

      • CONTENTS
      • Preface = ⅴ
      • Acknowledgements = ⅶ
      • Chapter 1 : Electrode Potential = 1
      • 1.1 Origin of Electrode Potential = 1
      • CONTENTS
      • Preface = ⅴ
      • Acknowledgements = ⅶ
      • Chapter 1 : Electrode Potential = 1
      • 1.1 Origin of Electrode Potential = 1
      • 1.1.1 Interface reaction = 1
      • 1.1.2 Interface potential difference = 4
      • 1.1.3 Distribution of potential at electrode-solution interface = 6
      • 1.1.4 Electrode potential = 6
      • 1.2 Nernst Equation = 7
      • 1.2.1 Thermodynamic derivation = 8
      • 1.2.2 Some applications = 9
      • 1.2.3 Meaning of parameters of the Nernst equation = 14
      • 1.2.4 Membrane potential = 19
      • 1.3 Electromotive Force = 19
      • 1.3.1 Electrode potential and electromotive force = 19
      • 1.3.2 Signs of electrode potential and electromotive force = 20
      • 1.3.3 Electrochemical (Galvanic) cell and electrolytic cell = 21
      • 1.3.4 Reversible cell and irreversible cell = 23
      • 1.3.5 Analysis of a practical measuring cell = 24
      • 1.3.6 Effect of temperature on electromotive force = 25
      • 1.4 Electrode Polarization = 29
      • 1.4.1 Causes of electrode polarization = 30
      • 1.4.2 Butler-Volmer equation = 31
      • 1.4.3 Some special cases in Butler-Volmer equation = 32
      • 1.4.4 Polarizable electrode and unpolarizable electrode = 35
      • 1.4.5 Factors affecting overpotential = 35
      • 1.4.6 Some practical implications = 38
      • Chapter 2 : Principles of Potentiometric Methods = 45
      • 2.1 Ion Activity = 45
      • 2.1.1 Activity and activity coefficient = 45
      • 2.1.2 Ionic strength = 48
      • 2.1.3 Calculation of activity coefficient = 49
      • 2.1.4 Activity standard = 50
      • 2.1.5 pH buffer solution = 52
      • 2.1.6 pM buffer solution = 54
      • 2.2 Potentiometry = 56
      • 2.2.1 Calibration curve method = 56
      • 2.2.2 Direct indication of pX = 57
      • 2.2.3 Known addition method = 58
      • 2.2.4 Known subtraction method = 60
      • 2.2.5 Known addition-dilution method = 60
      • 2.3 Potentiometric Titration = 61
      • 2.3.1 Titration curve method = 61
      • 2.3.2 Gran plot method = 65
      • 2.3.3 Null-point method = 67
      • Chapter 3 : Reference Electrodes = 71
      • 3.1 Requirements for a Reference Electrode = 71
      • 3.2 Calomel Electrodes = 73
      • 3.2.1 Principles = 73
      • 3.2.2 Preparation = 75
      • 3.2.3 Properties = 79
      • 3.2.4 Some remarks on usage = 81
      • 3.3 Silver-silver Chloride Electrodes = 81
      • 3.3.1 Principles = 82
      • 3.3.2 Preparation = 84
      • 3.3.3 Properties = 87
      • 3.4 Mercury-mercurous Sulfate Electrode = 88
      • 3.5 Oxidation-reduction Electrodes = 89
      • 3.6 Reference Electrodes for Field Use = 92
      • 3.6.1 Requirements for field use = 92
      • 3.6.2 Copper-copper sulfate electrode = 93
      • 3.6.3 Solid-state reference electrode = 93
      • 3.6.4 R$$\mathop u\limits ^\circ $$$$\breve z$$i$$\breve c$$ka reference selectrode = 94
      • Chapter 4 : Liquid-junction Potential = 96
      • 4.1 Introduction = 96
      • 4.2 Principles = 96
      • 4.2.1 Types of liquid-junction = 96
      • 4.2.2 Origin of liquid-junction potential = 99
      • 4.2.3 General equation for liquid-junction potential = 101
      • 4.2.4 Calculation of liquid-junction potential = 102
      • 4.3 Liquid-junction Potential Involving Colloidal Systems = 107
      • 4.4 Liquid-junction Potential in Relation to Salt Bridge = 108
      • 4.4.1 Functions of salt bridge = 108
      • 4.4.2 Patterns of liquid-junction with commonly used reference electrodes = 110
      • 4.4.3 Factors affecting liquid-junction potential = 111
      • 4.4.4 Comparison among liquid-junction patterns = 112
      • 4.5 Effect of Experimental Conditions on Liquid-junction Potential = 113
      • 4.5.1 Ionic strength of the test solution = 113
      • 4.5.2 pH of test solution = 113
      • 4.5.3 Temperature = 114
      • 4.5.4 Stirring = 114
      • 4.5.5 Considerations in continuous measurements = 115
      • 4.6 Residual Liquid-junction Potential = 115
      • 4.7 Reduction and Elimination of Liquid-junction Potential = 116
      • 4.7.1 Use of reference electrodes without liquid-junction = 117
      • 4.7.2 Proper selection of salt bridge solution = 117
      • 4.7.3 Proper setup of liquid-junction = 117
      • 4.7.4 Separation from colloids and avoidance of clogging = 118
      • Chapter 5 : Characteristics of Ion-selective Electrodes = 121
      • 5.1 Introduction = 121
      • 5.2 Potential Response = 121
      • 5.3 Detection Limit = 124
      • 5.3.1 Definition = 124
      • 5.3.2 Effect of solubility of membrane material = 124
      • 5.3.3 Effect of surface condition of electrode membrane = 125
      • 5.3.4 Effect of solution composition = 125
      • 5.3.5 Effect of other factors = 125
      • 5.4 Selectivity = 126
      • 5.4.1 Definition = 126
      • 5.4.2 Determination of $$K^{pot}_{A,B}$$ = 126
      • 5.4.3 Comments on potentiometric selectivity coefficient = 130
      • 5.5 Resistance = 131
      • 5.5.1 Significance = 132
      • 5.5.2 Methods of measurement = 132
      • 5.5.3 Factors affecting electrode resistance = 134
      • 5.5.4 Insulation resistance (leakage resistance) = 135
      • 5.6 Response Time = 136
      • 5.6.1 Definition = 136
      • 5.6.2 Method of determination = 137
      • 5.6.3 Models for describing dynamic response = 138
      • 5.6.4 Factors affecting response time = 140
      • 5.6.5 Hysteresis = 142
      • 5.7 Other Properties = 142
      • 5.7.1 Effect of temperature, light and radiation = 142
      • 5.7.2 Potential drift = 143
      • 5.7.3 Life-time = 143
      • Chapter 6 : Glass Electrodes and Their Applications = 147
      • 6.1 Composition and Structure of Electrode Glass = 147
      • 6.1.1 Elementary composition = 148
      • 6.1.2 Structure of glass = 150
      • 6.1.3 Types of oxides constructing electrode glass = 151
      • 6.1.4 Function of constitutional oxides of elements in electrode glass = 152
      • 6.2 Properties of Electrode Glass = 156
      • 6.2.1 Sorption of water = 157
      • 6.2.2 Gel layer = 157
      • 6.2.3 exchange and distribution of ions at glass surface = 158
      • 6.2.4 Chemical durability = 159
      • 6.2.5 Electrical resistance = 161
      • 6.3 Mechanisms of Electrode Potential = 162
      • 6.3.1 Origin of membrane potential = 162
      • 6.3.2 Selectivity = 164
      • 6.3.3 Effect of structure of glass on selectivity = 165
      • 6.3.4 Acid error and alkaline error = 166
      • 6.3.5 Asymmetry potential = 167
      • 6.4 Fabrication = 168
      • 6.4.1 General consideration = 168
      • 6.4.2 Making of sensitive glass = 169
      • 6.4.3 Working of glass = 170
      • 6.4.4 Inner reference electrodes = 173
      • 6.4.5 Assembling = 174
      • 6.5 Applications = 174
      • 6.5.1 Determination of soil pH in the laboratory = 174
      • 6.5.2 Determination of pH of water = 178
      • 6.5.3 Use of cation-selective electrodes = 178
      • 6.5.4 Determination of pH and pNa of soils in situ = 179
      • Chapter 7 : Solid-state Membrane Electrodes and Their Applications = 183
      • 7.1 Principles = 183
      • 7.1.1 Electrode potential = 183
      • 7.1.2 Selectivity = 187
      • 7.1.3 Sensitivity = 191
      • 7.2 Types = 193
      • 7.3 Construction and Fabrication = 195
      • 7.3.1 Configuration = 195
      • 7.3.2 Preparation of electro-active material = 196
      • 7.3.3 Making of membrane by pressing or pressing-sintering = 198
      • 7.3.4 Inner conducting element = 199
      • 7.3.5 Miniature and micro-electrodes = 200
      • 7.4 Properties and Applications of Some Electrodes = 200
      • 7.4.1 Chloride ion-selective electrode = 200
      • 7.4.2 Fluoride ion-selective electrode = 205
      • 7.4.3 Sulfide ion-selective electrode = 208
      • 7.4.4 Lead ion-selective electrode = 211
      • 7.4.5 Cyanide ion-selective electrode = 213
      • Chapter 8 : Liquid-state Membrane Electrodes and Their Applications = 217
      • 8.1 Principles = 217
      • 8.1.1 Electrodes of the ion-exchanger type = 217
      • 8.1.2 Electrodes of the neutral carrier type = 221
      • 8.2 Basic Properties = 225
      • 8.2.1 Stability of electrode potential = 225
      • 8.2.2 Selectivity = 226
      • 8.2.3 Detection limit = 232
      • 8.2.4 Response time = 234
      • 8.2.5 Life-time = 236
      • 8.3 Construction = 237
      • 8.3.1 Requirements for various components = 237
      • 8.3.2 Liquid membrane type = 238
      • 8.3.3 Polymer membrane type = 239
      • 8.3.4 Other constructions = 239
      • 8.4 Applications of Some Important Electrodes = 242
      • 8.4.1 Nitrate ion-selective electrode = 242
      • 8.4.2 Potassium ion-selective electorde = 245
      • 8.4.3 Calcium in-selective electorde = 252
      • 8.4.4 barium ion-selective electrode = 261
      • Chapter 9 : Gas Sensors and Their Applications = 267
      • 9.1 Principles = 267
      • 9.1.1 electrode potential = 267
      • 9.1.2 Requirements for the production of gas = 271
      • 9.1.3 Measuring range in relation to electrolyte concentration = 273
      • 9.2 Construction = 276
      • 9.2.1 Gas-permeable membrane = 277
      • 9.2.2 Inner electrolyte solution = 280
      • 9.2.3 Indicator electrode = 282
      • 9.2.4 Reference electrode = 284
      • 9.2.5 Air-gap sensor = 285
      • 9.3 Handling = 285
      • 9.3.1 Adjustment of pH of test solution = 285
      • 9.3.2 Stirring and closing of test solution = 296
      • 9.3.3 Time of reading = 287
      • 9.3.4 Effect of temperature = 288
      • 9.3.5 Conditioning and storage = 288
      • 9.3.6 Some remarks = 289
      • 9.4 Uses of Some Sensors = 289
      • 9.4.1 Ammonia sensor = 289
      • 9.4.2 Hydrogen sulfide sensor = 291
      • 9.4.3 Carbon dioxide sensor = 294
      • Chapter 10 : Oxidation-reduction Potential and Its Measurement = 297
      • 10.1 Principles = 297
      • 10.1.1 Oxidation-reduction reaction and its basic equations = 297
      • 10.1.2 Influence of pH on Eh = 300
      • 10.1.3 Oxidation-reduction electrode = 302
      • 10.2 Fabrication and Treatment of Oxidation-reduction Electrodes = 305
      • 10.2.1 Electrode material = 305
      • 10.2.2 Fabrication of platinum electrode = 305
      • 10.2.3 Selection of platinum electrode = 306
      • 10.2.4 Treatment of electrode surface = 307
      • 10.3 Measurement of Oxidation-reduction Potential = 308
      • 10.3.1 Conventional method for soils = 308
      • 10.3.2 Depolarization method for soils = 310
      • 10.3.3 Conventional method for water = 312
      • Chapter 11 : Common problems and Their Causes in Potentiometric Measurements = 314
      • 11.1 General Examination = 314
      • 11.1.1 Instrument = 315
      • 11.1.2 Electrodes = 315
      • 11.1.3 Solution = 316
      • 11.2 Problems with the Reading = 316
      • 11.2.1 No reading = 316
      • 11.2.2 Pointer beyond the scale = 317
      • 11.2.3 Pointer vibration enhanced by external induction = 319
      • 11.2.4 Slow attainment of steady reading = 321
      • 11.2.5 Very slow attainment of steady reading = 321
      • 11.2.6 Parallel shifts in reading = 323
      • 11.3 Problems with the S Value = 323
      • 11.3.1 No potential response = 324
      • 11.3.2 S smaller than theoretical value = 325
      • 11.3.3 S smaller than theoretical value at low concentrations = 326
      • 11.3.4 S deviates from theoretical value at high concentrations = 327
      • 11.3.5 Irregular S = 328
      • 11.4 Problems with the Solution = 328
      • 11.5 Problems with the Liquid-junction = 329
      • Chapter 12 : Conductometric Methods = 332
      • 12.1 Principles = 333
      • 12.1.1 Electrical conductance and specific conductance = 333
      • 12.1.2 Equivalent conductance and limiting equivalent conductance = 333
      • 12.1.3 Ionic mobility = 336
      • 12.1.4 Debye-H$$\ddot u$$ckel-Onsager theory = 337
      • 12.1.5 Conductance at high frequencies and in strong electric field = 339
      • 12.1.6 Electrical conductance of soils = 340
      • 12.2 AC Method of Measurement = 340
      • 12.2.1 Conductance cell and electrodes = 341
      • 12.2.2 Factors affecting precision of measurement = 345
      • 12.2.3 Calculation of results = 348
      • 12.3 DC Method of Measurement = 350
      • 12.3.1 Comparison between AC method and DC method = 350
      • 12.3.2 Principle = 351
      • 12.3.3 Apparatus = 352
      • 12.3.4 Measurement = 354
      • 12.4 Conductometric Titration = 355
      • 12.4.1 Titration of strong acid = 355
      • 12.4.2 Titration of a mixture of strong acid and weak acid = 356
      • 12.4.3 Replacement titration = 357
      • 12.4.4 Precipitation titration = 357
      • 12.5 Applications = 359
      • 12.5.1 Evaluation of water quality = 359
      • 12.5.2 Measurement of electrical conductivity of soils in situ = 359
      • 12.5.3 Estimation of salinity of soils = 362
      • 12.5.4 Evaluation of nutrient status of soils = 363
      • 12.5.5 Determination of cation-exchange capacity of soils = 363
      • 12.5.6 Other applications = 363
      • Chapter 13 : Voltammetric Methods = 366
      • 13.1 General Principles = 367
      • 13.1.1 Current-voltage curve = 367
      • 13.1.2 Diffusion current = 368
      • 13.1.3 Half-wave potential = 376
      • 13.2 Apparatus = 380
      • 13.2.1 Working electrode = 380
      • 13.2.2 Reference electrode = 387
      • 13.2.3 Electrolytic cell = 389
      • 13.3 Determination of Reducing Substances in Soils = 389
      • 13.3.1 General = 389
      • 13.3.2 Characterization = 391
      • 13.3.3 Determination in situ = 392
      • 13.3.4 Calibration = 392
      • 13.4 Determination of COD of Water = 392
      • 13.4.1 Theoretical consideration = 392
      • 13.4.2 Determination = 344
      • 13.4.3 Some remarks = 394
      • 13.5 Determination of Oxygen in Soils and Water = 395
      • 13.5.1 Principles = 395
      • 13.5.2 Factors affecting determination = 396
      • 13.5.3 Determination = 401
      • 13.6 Determination of Manganous and Ferrous Ions and Stability Constants of Their Complexes = 403
      • 13.6.1 General consideration = 403
      • 13.6.2 Determination of manganese = 404
      • 13.6.3 Determination of ferrous iron = 404
      • 13.6.4 Determination of stability constant of complexes = 404
      • 13.7 Amperometric Titration = 406
      • 13.7.1 Principles = 406
      • 13.7.2 Characteristics = 407
      • 13.7.3 Determination of chloride = 407
      • 13.7.4 Determination of sulfate = 408
      • Chapter 14 : Electrochemical Instruments = 413
      • 14.1 Potentiometric Instruments = 413
      • 14.1.1 Historical development = 413
      • 14.1.2 Requirements for the potentiometric instruments when using ion-selective electrodes = 414
      • 14.1.3 Components of potentiometric instruments = 422
      • 14.1.4 Computerized potentiometric instruments = 430
      • 14.2 Conductometric Instruments = 432
      • 14.2.1 General consideration = 433
      • 14.2.2 Measuring voltage source = 433
      • 14.2.3 Measuring circuits = 435
      • 14.2.4 Amplifier = 440
      • 14.2.5 Indicator = 440
      • 14.2.6 Direct-current conductometric instruments = 442
      • 14.2.7 Computerized conductometers = 442
      • 14.3 Voltammetric Instruments = 443
      • 14.3.1 Basic components = 443
      • 14.3.2 Voltage generator = 443
      • 14.3.3 Potentiostat = 444
      • 14.3.4 Current-voltage converter = 446
      • 14.3.5 Instruments with constant polarization voltage = 448
      • 14.4 Pocket Electrochemical Multimeter = 449
      • 14.4.1 General consideration = 449
      • 14.4.2 Measuring circuits = 449
      • 14.4.3 High-input impedance DC amplifier = 452
      • 14.4.4 Digital voltmeter = 452
      • Index = 454
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼