1 R. Chawla, 2017
2 M. Grätzel, "high-effi ciency solar cell based on dyesensitized colloidal TiO 2 fi lms" 353 : 737-740, 1991
3 "ZSW takes CIGS thin film cell to 22% conversion efficiency"
4 E. Wallin, "World-record Cu(In, Ga)Se2-based thin-film sub-module with 17.4% efficiency" 20 : 851-854, 2012
5 N. R. Paudel, "Ultrathin CdS/CdTe solar cells by sputtering" 105 : 109-112, 2012
6 D.D. Smith, "Toward the practical limits of silicon solar cells" 1465-1469, 2014
7 J. J. Loferski, "Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion" 27 : 777-784, 1956
8 W. Shockley, "The theory of p–n junctions in semiconductors and p–n junction transistors" 28 : 435-489, 1949
9 M. A. Green, "The passivated emitter and rear cell(PERC) : from conception to mass production" 143 : 190-197, 2015
10 S. Ruhle, "Tabulated values of the Shockley–Queisser limit for single junction solar cells" 130 : 139-147, 2016
11 C. Steinhagen, "Synthesis of Cu 2 ZnSnS 4 nanocrystals for use in low-cost photovoltaics" 131 (131): 12554-12555, 2009
12 R. M. Geisthardt, "Status and potential of CdTe solar-cell effi ciency" 5 (5): 1217-1221, 2015
13 A. Patra, "Solar cell production release hazardous gases and requires toxic materials" 2 (2): 25-31, 2013
14 M. A. Green, "Solar cell effi ciency tables(version 47)" 24 : 3-11, 2016
15 M. A. Green, "Solar cell effi ciency tables(Version38)" 19 (19): 84-92, 2011
16 M. A. Green, "Solar cell effi ciency tables(Version 49)" 25 (25): 3-13, 2017
17 NREL, "Solar Technology Cost Analysis"
18 K. Yoshikawa, "Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion effi ciency over 26%" 2 : 17032-, 2017
19 J.C. Pla, "Short circuit current vs cell thickness in solar cells under rear illumination : a direct evaluation of the diff usion length" 44 (44): 719-724, 2000
20 J. Yi, "Robust scheduling scheme for energy storage to facilitate high penetration of renewables" 7 (7): 797-807, 2016
21 Muhammad Quddamah Khokhar, "Review of Rear Emitter Silicon Heterojunction Solar Cells" 한국전기전자재료학회 21 (21): 138-143, 2020
22 Z. Zheng, "Recent progress towards quantum dot solar cells with enhanced optical absorption" 11 : 266-, 2016
23 A. K. Shukla, "Recent advancement in BIPV product technologies : a review" 140 : 188-195, 2017
24 A. Richter, "Reassessment of the limiting effi ciency for crystalline silicon solar cells" 3 : 1184-1191, 2013
25 A. Damiano, "Real-time control strategy of energy storage systems for renewable energy sources exploitation" 5 (5): 567-576, 2014
26 M. Y. Levy, "Rapid and precise calculations of energy and particle fl ux for detailed-balance photovoltaic applications" 50 : 1400-1405, 2006
27 M. A. Green, "Radiative effi ciency of state-of-the-art photovoltaic cells" 20 : 472-476, 2012
28 C. Becker, "Polycrystalline silicon thin fi lms by high-rate electronbeam evaporation for photovoltaic applications—Infl uence of substrate texture and temperature" 10 : 61-65, 2011
29 M. Topic, "Performance limits and status of ˇ single-junction solar cells with emphasis on CIGS" 5 (5): 360-365, 2015
30 R. Chawla, "Performance comparison of Si and InGaN p-n junction Solar Cell" 8 (8): 176-181, 2017
31 O. E. Semonin, "Peak external photocurrent quantum effi-ciency exceeding 100% via MEG in a quantum dot solar cell" 334 (334): 1530-1533, 2011
32 J. Jean, "Pathways for solar photovoltaics" 8 : 1200-1219, 2015
33 K. Sun, "Over 9% effi cient kersterite Cu2ZnSnS4 solar cell fabricated by using Zn1-xCdxS buff er layer" 6 : 1600046-, 2016
34 G. Scarpa, "Organic thinfi lm phototransistors based on poly(3-hexylthiophene)" 193 (193): 012114-, 2009
35 S. Mori, "Organic photovoltaic module development with inverted device structure" 2015 : 1737-, 2015
36 P. Jackson, "New world record effi ciency for Cu(In, Ga)Se2 thin-fi lm solar cells beyond 20%" 19 : 894-897, 2011
37 S. Albrecht, "Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature" 9 : 81-88, 2016
38 F. Meillaud, "Latest developments of high effi ciency micromorph tandem silicon solar cells implementing innovative substrate materials and improved cell design" 2011
39 R. Chawla, "Internet of things driven framework for smart solar energy system" 142 (142): 011201-, 2020
40 R. Komiya, "Improvement of the conversion effi ciency of a monolithic type dyesensitized solar cell module, Technical Digest" 2011
41 J. S. Cashmore, "Improved conversion effi ciencies of thin-fi lm silicon tandem(MICROMORPH™)photovoltaic modules" 144 : 84-95, 2016
42 G. Sozzi, "Impact of front-side point contact/passivation geometry on thin-fi lm solar cell performance" 165 : 94-102, 2017
43 S. Moon, "Highly effi cient single-junction GaAs thin-fi lm solar cell on fl exible substrate" 6 : 30107-, 2016
44 E. D. Kosten, "Highly effi cient GaAs solar cells by limiting light emission angle" 2 : e45-, 2013
45 E. Colegrove, "High-effi ciency polycrystalline CdS/CdTe solar cells on buff ered commercial TCO-coated glass" 41 (41): 2833-2837, 2012
46 H. Sai, "High effi ciency microcrystalline silicon solar cells on honeycomb textured substrates grown with high-rate VHF plasma-enhanced chemical vapor deposition" 54 : 08KB05-, 2015
47 H. Sugimoto, "High effi ciency and large volume production of CISbased modules" 2014
48 J. Zhao, "High effi ciency PERT cells on SEH p-type Si substrates and PERT cells on SHE n-type Si substrates"
49 박남규, "High Efficiency Perovskite Solar Cells: Materials and Devices Engineering" 한국전기전자재료학회 21 (21): 1-15, 2020
50 G. Mariani, "GaAs nanopillar-array solar cells employing in situ surface passivation" 4 : 1497-, 2013
51 Hyeongsik Park, "Front and Back TCO Research Review of a-Si/c-Si Heterojunction with Intrinsic Thin Layer (HIT) Solar Cell" 한국전기전자재료학회 19 (19): 165-172, 2018
52 F. Dimroth, "Four-junction wafer-bonded concentrator solar cells" 6 (6): 343-349, 2016
53 B. M. Kayes, "Flexible thin-fi lm tandem solar cells with > 30% effi ciency" 4 : 729-733, 2014
54 "First solar press release. First Solar achieves world record 18.6%thin fi lm module conversion effi ciency"
55 "First solar press release, First Solar builds the highest effi ciency thin fi lm PV cell on record"
56 J. Mattheis, "Finite mobility eff ects on the radiative effi ciency limit of pn-junction solar cells’" 77 : 085203-, 2008
57 L. D. Menard, "Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling" 11 (11): 512-517, 2011
58 M. Faryad, "Enhancement of light absorption effi-ciency of amorphous-silicon thin-fi lm tandem solar cell due to multiple surface-plasmon-polariton waves in the near-infrared spectral regime" 52 (52): 087106-, 2013
59 M. A. Green, "Energy conversion approaches and materials for high-effi ciency photovoltaics" 16 : 23-34, 2016
60 K. U. Isah, "Eff ect of diff erent copper precursor layer thickness on properties of Cu2ZnSnS4(CZTS)thin fi lms prepared by sulfurization of thermally deposited stacked metallic layers" 2 (2): 14-19, 2013
61 T. Mishima, "Development status of higheffi ciency HIT solar cells" 95 : 18-, 2010
62 T. Matsui, "Development of highly stable and effi cient amorphous silicon based solar cells" 2213-2217, 2013
63 J.I. Rosell, "Design and simulation of a low concentrating photovoltaic/thermal system" 46 (46): 3034-3046, 2005
64 R. Chawla, "Design and analysis of multi junction solar photovoltaic cell with graphene as an intermediate layer" 20 (20): 3693-3702, 2020
65 "Current and Future Costs of Photovoltaics: Long-term Scenarios for Market Development, System Prices and LCOE of Utilityscale PV Systems" Fraunhofer Institute for Solar Energy Systems
66 "Crystalline Silicon PV Market by Type (Mono-Crystalline and Multi-Crystalline) and End-User (Residential and Commercial, Utility-Scale) - Global Opportunity Analysis and Industry Forecasts 2014–2022"
67 J. Ramanujam, "Copper indium gallium selenide based solar cells—a review" 10 (10): 1306-1319, 2017
68 V.M. Andreev, "Concentrator PV modules and solar cells for TPV systems" 84 (84): 3-17, 2004
69 U. Wurfel, "Charge carrier separation in solar cells" 5 (5): 461-469, 2015
70 L. Ciani, "Characterization of optical ageing eff ects on Ruthenium based dye-sensitized solar cells" 491-495, 2014
71 MIT Energy Initiative, "Chapter 2: Photovoltaic Technology" 21-45, 2015
72 NREL, "Best Research-Cell Efficiency Chart"
73 "Article-“The new silicon valley – Polysilicon”"
74 R.M. Swanson, "Approaching the 29% limit efficiency of silicon solar cells" 889-894, 2005
75 L. Fang, "Amorphous Si rear Schottky junction solar cell with a LiF/Al back electrode" 58 (58): 3048-3052, 2011
76 G. L. Araújo, "Absolute limiting effi ciencies for photovoltaic energy conversion" 33 : 213-240, 1994
77 J. L. Peñaa, "A detailed study of the series resistance eff ect on CdS/CdTe solar cells with Cu/Mo back contact" 520 (520): 680-683, 2011
78 Sabuj Sarkar, "A Novel Method for Optimizing Power Efficiency of a Solar Photovoltaic Device" 한국전기전자재료학회 21 (21): 377-383, 2020
79 R. Chawla, "A Mamdani fuzzy logic system to enhance solar cell micro-cracks image processing" 9 : 34-, 2018
80 W. Wang, "A 12.6% Cu 2 ZnSnS x Se 4−x (CZTSSe) solar cell is presented with detailed device characteristics" 4 (4): 1301465-, 2013
81 S. Zhang, "335 watt world record p-type monocrystalline module with 20.6% effi cient PERC solar cells"
82 B.M. Kayes, "27.6% conversion effi ciency, a new record for single-junction solar cells under 1 sun illumination" 2011
83 B.M. Kayes, "27.6% Conversion effi ciency, a new record for single-junction solar cells under 1 sun illumination" 4-8, 2011
84 A. W. Blakers, "22.8%effi cient silicon solar cell" 55 : 1363-1365, 1989
85 M. A. Green, "19.1% effi cient silicon solar cell" 44 (44): 1163-1164, 1984