RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      인플루언서를 위한 딥러닝 기반의 제품 추천모델 개발 = Deep Learning-based Product Recommendation Model for Influencer Marketing

      한글로보기

      https://www.riss.kr/link?id=A108195981

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this study, with the goal of developing a deep learning-based product recommendation model for effective matching of influencers and products, a deep learning model with a collaborative filtering model combined with generalized matrix decomposition(GMF), a collaborative filtering model based on multi-layer perceptron (MLP), and neural collaborative filtering and generalized matrix Factorization (NeuMF), a hybrid model combining GMP and MLP was developed and tested. In particular, we utilize one-class problem free boosting (OCF-B) method to solve the one-class problem that occurs when training is performed only on positive cases using implicit feedback in the deep learning-based collaborative filtering recommendation model. In relation to model selection based on overall experimental results, the MLP model showed highest performance with weighted average precision, weighted average recall, and f1 score were 0.85 in the model (n=3,000, term=15). This study is meaningful in practice as it attempted to commercialize a deep learning-based recommendation system where influencer's promotion data is being accumulated, pactical personalized recommendation service is not yet commercially applied yet.
      번역하기

      In this study, with the goal of developing a deep learning-based product recommendation model for effective matching of influencers and products, a deep learning model with a collaborative filtering model combined with generalized matrix decomposition...

      In this study, with the goal of developing a deep learning-based product recommendation model for effective matching of influencers and products, a deep learning model with a collaborative filtering model combined with generalized matrix decomposition(GMF), a collaborative filtering model based on multi-layer perceptron (MLP), and neural collaborative filtering and generalized matrix Factorization (NeuMF), a hybrid model combining GMP and MLP was developed and tested. In particular, we utilize one-class problem free boosting (OCF-B) method to solve the one-class problem that occurs when training is performed only on positive cases using implicit feedback in the deep learning-based collaborative filtering recommendation model. In relation to model selection based on overall experimental results, the MLP model showed highest performance with weighted average precision, weighted average recall, and f1 score were 0.85 in the model (n=3,000, term=15). This study is meaningful in practice as it attempted to commercialize a deep learning-based recommendation system where influencer's promotion data is being accumulated, pactical personalized recommendation service is not yet commercially applied yet.

      더보기

      참고문헌 (Reference)

      1 이용구 ; 양현일 ; 최정아 ; 허준, "화장품 추천 사례에서 요인, 군집분석을 이용한 협업 필터링 추천 모델과 연관성 규칙 기법의 성능 비교 연구" 한국자료분석학회 14 (14): 689-705, 2012

      2 김성언 ; 김은경 ; 김용기, "퍼지 추론과 감성사전 구축을 통한 화장품 추천 시스템" 한국지능시스템학회 27 (27): 253-260, 2017

      3 정언용, "인플루언서 마케팅 사례 분석과 마케팅 연구 제언" 서비스마케팅학회 12 (12): 33-39, 2019

      4 송희석, "심층신경망 기반의 뷰티제품 추천시스템" 한국데이터전략학회 26 (26): 89-101, 2019

      5 Cheng, H., "Wide & deep learning for recommender systems" 7-10, 2016

      6 Ha, E., "User’s SNS data-based scoring scheme for personalized cosmetics recommendation" 23 (23): 2016

      7 Patty, J. C., "Recommendations system for purchase of cosmetics using contentbased filtering" 10 (10): 1-5, 2018

      8 조영성 ; 구미숙 ; 류근호, "RFM기법과 k-means 기법을 이용한 개인화 추천시스템의 개발" 한국컴퓨터정보학회 17 (17): 163-172, 2012

      9 Iwabuchi, R., "Proposal of recommender system based on user evaluation and cosmetic ingredients" 1-6, 2017

      10 He, X., "Neural factorization machines for sparse predictive analytics" 2017

      1 이용구 ; 양현일 ; 최정아 ; 허준, "화장품 추천 사례에서 요인, 군집분석을 이용한 협업 필터링 추천 모델과 연관성 규칙 기법의 성능 비교 연구" 한국자료분석학회 14 (14): 689-705, 2012

      2 김성언 ; 김은경 ; 김용기, "퍼지 추론과 감성사전 구축을 통한 화장품 추천 시스템" 한국지능시스템학회 27 (27): 253-260, 2017

      3 정언용, "인플루언서 마케팅 사례 분석과 마케팅 연구 제언" 서비스마케팅학회 12 (12): 33-39, 2019

      4 송희석, "심층신경망 기반의 뷰티제품 추천시스템" 한국데이터전략학회 26 (26): 89-101, 2019

      5 Cheng, H., "Wide & deep learning for recommender systems" 7-10, 2016

      6 Ha, E., "User’s SNS data-based scoring scheme for personalized cosmetics recommendation" 23 (23): 2016

      7 Patty, J. C., "Recommendations system for purchase of cosmetics using contentbased filtering" 10 (10): 1-5, 2018

      8 조영성 ; 구미숙 ; 류근호, "RFM기법과 k-means 기법을 이용한 개인화 추천시스템의 개발" 한국컴퓨터정보학회 17 (17): 163-172, 2012

      9 Iwabuchi, R., "Proposal of recommender system based on user evaluation and cosmetic ingredients" 1-6, 2017

      10 He, X., "Neural factorization machines for sparse predictive analytics" 2017

      11 He, X., "Neural collaborative filtering" 173-182, 2017

      12 Koren, Y., "Matrix factorization techniques for recommender systems" 42 (42): 30-37, 2009

      13 Bokde, D., "Matrix factorization model in collaborative filtering algorithms : A survey" 49 : 136-146, 2015

      14 Gholamian, M., "Improving electronic customers'profile in recommender systems using data mining techniques" 1 (1): 449-456, 2011

      15 Matsunami, Y., "How to find similar users in order to develop a cosmetics recommender system" 337-350, 2018

      16 Okura, S., "Embedding-based news recommendation for millions of users" 1933-1942, 2017

      17 Choi, D. J., "Design of a trend analysis and recommendation system using beauty big data" 1520-1521, 2018

      18 Covington, P., "Deep neural networks for youtube recommendations" 191-198, 2016

      19 Chee, S. H. S., "Data Warehousing and Knowledge Discovery" 2001

      20 Lee, E., "Big-data analysis based mobile services using individual skin-type and genes for cosmetic recommendation" 495-496, 2018

      21 Herlocker, J., "An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms" 5 (5): 2002

      22 Song, G., "Algorithm for generating negative cases for collaborative filtering recommender" 2022

      23 Yim, Y., "A user driven cosmetic item recommendation system by character recognition" 722-725, 2016

      24 Wang, Y., "A personalized recommender system for the cosmetic business" 26 : 427-434, 2004

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-04-01 학회명변경 한글명 : 한국데이타베이스학회 -> 한국데이터전략학회
      영문명 : 미등록 -> Korea Data Strategy Society
      KCI등재
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-06-22 학술지명변경 한글명 : Journal of Information Technology Applications & Menagement -> Journal of Information Technology Applications & Management
      외국어명 : Journal of Information Technology Applications & Menagement -> Journal of Information Technology Applications & Management
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.39 0.39 0.48
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.59 0.56 0.673 0.18
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼