Flow in the blood sac of the Korean artificial heart is numerically simulated by finite element method. Fluid-structure interaction algorithm is employed to compute the 3D blood flow interacting with the sac material. The motion of the actuator is sim...
Flow in the blood sac of the Korean artificial heart is numerically simulated by finite element method. Fluid-structure interaction algorithm is employed to compute the 3D blood flow interacting with the sac material. The motion of the actuator is simplified by a time-varying pressure boundary condition imposed on the outer surface of the sac. Numerical solutions show that there are a strong flow into the outlet and a stagnation flow near the inlet during systole. Shear stress distribution is also delineated to assess the possibility of thrombus formation.