RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      Rotary ultrasonic machining of woven CFRP composite in a cryogenic environment

      한글로보기

      https://www.riss.kr/link?id=A107430787

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>In the present study, rotary ultrasonic machining (RUM) was adopted to perform drilling of carbon fiber reinforced plastics (CFRP) in a cryogenic environment. An L27 orthogonal array was selecte...

      <P><B>Abstract</B></P> <P>In the present study, rotary ultrasonic machining (RUM) was adopted to perform drilling of carbon fiber reinforced plastics (CFRP) in a cryogenic environment. An L27 orthogonal array was selected to conduct experiments by varying the spindle speed (denoted as N), feed rate (denoted as f), and ultrasonic power (denoted as P). The thrust force (denoted as Fz), exit burr area, and surface roughness (denoted as Ra) were measured to evaluate the machining performance. The influence of process parameters and the regression model were derived for each output quality response. Additionally, multi-objective optimization was performed using desirability analysis, and the predicted levels were used for confirmation. The results indicated that the feed rate (f) contributed more to the thrust force (Fz) by 45.85% and a maximum thrust force was recorded at 0.1 mm/rev. A decrease in spindle speed (N) was associated with an increase in feed rate (f) and ultrasonic power (P), and it resulted in minimum exit burr area. The influence of ultrasonic power (P) was highly significant in reducing burrs with a contribution of 52.45%. Conversely, the surface roughness (Ra) of the drill holes decreased at 3000 rpm, and this was attributed to the brittle fracture of the fibers at a lower temperature. Both N (30.88%) and f (30.83%) had an equal influence on producing a better surface finish in the drill holes. Furthermore, the predicted optimal settings were used to validate the results and were found to be within 95% confidence and prediction interval. Finally, the microscopic images of tool wear, burr formation, and drill hole surface morphology were analyzed and examined.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Prediction of regression model for RUM of CFRP in a cryogenic environment. </LI> <LI> Output responses such as thrust force, burr area and roughness are investigated. </LI> <LI> The adequacy of an ANOVA model is checked for each output response. </LI> <LI> Optimization is performed by desirability analysis and the results are validated. </LI> <LI> Tool wear, burr formation, and drill hole surface morphology are analyzed. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼