RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      슈퍼픽셀 이미지 분할을 이용한 ResNet 기반 백혈구 감별 알고리즘 개발

      한글로보기

      https://www.riss.kr/link?id=A105303601

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, we propose an efficient WBC 14-Diff classification which performs using the WBC-ResNet-152, a type of CNN model. The main point of view is to use Super-pixel for the segmentation of the image of WBC, and to use ResNet for the classification of WBC.
      A total of 136,164 blood image samples (224x224) were grouped for image segmentation, training, training verification, and final test performance analysis.
      Image segmentation using super-pixels have different number of images for each classes, so weighted average was applied and therefore image segmentation error was low at 7.23%.
      Using the training data-set for training 50 times, and using soft-max classifier, TPR average of 80.3% for the training set of 8,827 images was achieved. Based on this, using verification data-set of 21,437 images, 14-Diff classification TPR average of normal WBCs were at 93.4% and TPR average of abnormal WBCs were at 83.3%. The result and methodology of this research demonstrates the usefulness of artificial intelligence technology in the blood cell image classification field.
      WBC-ResNet-152 based morphology approach is shown to be meaningful and worthwhile method. And based on stored medical data, in-depth diagnosis and early detection of curable diseases is expected to improve the quality of treatment.
      번역하기

      In this paper, we propose an efficient WBC 14-Diff classification which performs using the WBC-ResNet-152, a type of CNN model. The main point of view is to use Super-pixel for the segmentation of the image of WBC, and to use ResNet for the classifica...

      In this paper, we propose an efficient WBC 14-Diff classification which performs using the WBC-ResNet-152, a type of CNN model. The main point of view is to use Super-pixel for the segmentation of the image of WBC, and to use ResNet for the classification of WBC.
      A total of 136,164 blood image samples (224x224) were grouped for image segmentation, training, training verification, and final test performance analysis.
      Image segmentation using super-pixels have different number of images for each classes, so weighted average was applied and therefore image segmentation error was low at 7.23%.
      Using the training data-set for training 50 times, and using soft-max classifier, TPR average of 80.3% for the training set of 8,827 images was achieved. Based on this, using verification data-set of 21,437 images, 14-Diff classification TPR average of normal WBCs were at 93.4% and TPR average of abnormal WBCs were at 83.3%. The result and methodology of this research demonstrates the usefulness of artificial intelligence technology in the blood cell image classification field.
      WBC-ResNet-152 based morphology approach is shown to be meaningful and worthwhile method. And based on stored medical data, in-depth diagnosis and early detection of curable diseases is expected to improve the quality of treatment.

      더보기

      참고문헌 (Reference)

      1 Y. M. Alomari, 1-17, 2014

      2 현정환, "객체 검출 시스템 개발을 위한 Tracking-Learning-Detection 알고리즘과 학습알고리즘에 관한 연구" 한국정보기술학회 15 (15): 139-145, 2017

      3 Shlee, "White blood cell image Retrieving & Clustering System" 26 (26): 530-532, 1999

      4 M. D. Zeiler, "Visualizing and understanding convolutional networks" 818-833, 2014

      5 K. Simonyan, "Very deep convolutional networks for large-scale image recognition, Vol. 6" 1-14, 2015

      6 N. Ghane, "Segmentation of White Blood Cells From Microscopic Images Using a Novel Combination of K-Means Clustering and Modified Watershed Algorithm" 7 (7): 92-101, 2017

      7 R. Achanta, "SLIC Superpixels Compared to State-of-the-Art Superpixel Methods" Institute of Electrical and Electronics Engineers (IEEE) 34 (34): 2274-2282, 2012

      8 "Pattern Recognition, Pattern Analysis"

      9 M. I. Razzak, "Microscopic Blood Smear Segmentation and Classification using Deep Contour Aware CNN and Extreme Machine Learning" 49-55, 2017

      10 A. Krizhevsky, "Imagenet classification with deep convolutional neural networks" 1097-1105, 2012

      1 Y. M. Alomari, 1-17, 2014

      2 현정환, "객체 검출 시스템 개발을 위한 Tracking-Learning-Detection 알고리즘과 학습알고리즘에 관한 연구" 한국정보기술학회 15 (15): 139-145, 2017

      3 Shlee, "White blood cell image Retrieving & Clustering System" 26 (26): 530-532, 1999

      4 M. D. Zeiler, "Visualizing and understanding convolutional networks" 818-833, 2014

      5 K. Simonyan, "Very deep convolutional networks for large-scale image recognition, Vol. 6" 1-14, 2015

      6 N. Ghane, "Segmentation of White Blood Cells From Microscopic Images Using a Novel Combination of K-Means Clustering and Modified Watershed Algorithm" 7 (7): 92-101, 2017

      7 R. Achanta, "SLIC Superpixels Compared to State-of-the-Art Superpixel Methods" Institute of Electrical and Electronics Engineers (IEEE) 34 (34): 2274-2282, 2012

      8 "Pattern Recognition, Pattern Analysis"

      9 M. I. Razzak, "Microscopic Blood Smear Segmentation and Classification using Deep Contour Aware CNN and Extreme Machine Learning" 49-55, 2017

      10 A. Krizhevsky, "Imagenet classification with deep convolutional neural networks" 1097-1105, 2012

      11 A. Krizhevsky, "ImageNet Classification with Deep Convolutional Neural Networks" 1 : 1097-1105, 2012

      12 최종문, "Image Analysis Software를 이용한 변형적혈구 측정법 개발" 대한진단검사의학회 3 (3): 6-14, 2013

      13 "Identity Mappings in Deep Residual Networks Review"

      14 K. He, "Identity Mappings in Deep Residual Networks" 3 : 1-15, 2016

      15 M. Liu, "Entropy rate superpixel segmentation" 1-14, 2014

      16 K. He, "Deep residual learning for image recognition" 770-778, 2015

      17 Jsyoo, "Deep learning based image recognition technology trend" Information and Society 17-24, 2017

      18 Y. Tang, "Deep Learning using Linear Support Vector Machines" 4 : 2015

      19 I. Goodfellow, "Deep Learning" MIT Press 2016

      20 M. Habibzadeh, "Comparati ve study of shape, intensity and texture features and support vector machine for white blood cell classification" 7 (7): 20-35, 2013

      21 S. Ioffe, "Batch Normalization: Acceler ating Deep Network Training by Reducing Internal Covariate Shift" 3 : 1-11, 2015

      22 R. Sorgedrager, "Automated malaria diagnosis using convolutional neural networks in an on-field setting" Delft University of Technology 2018

      23 M. Xu, "A deep convolutional neural network for classification of red blood cells in sickle cell anemia" 13 (13): 1-27, 2017

      24 H. N. Mhaskar, "A Deep Learning Approach to Diabetic Blood Glucose Prediction" 3 (3): 1-11, 2017

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2006-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2004-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.44 0.44 0.44
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.43 0.38 0.58 0.15
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼