RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      A parametric study of the 2D model of solar air heater with elliptical rib roughness using CFD

      한글로보기

      https://www.riss.kr/link?id=A105077712

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The heat transfer can be improved by providing artificial roughness on absorber plate of the solar air heat. Many studies are available on circular, semi-circular, triangular and rectangular rib roughened solar air heater. But in present study heat tr...

      The heat transfer can be improved by providing artificial roughness on absorber plate of the solar air heat. Many studies are available on circular, semi-circular, triangular and rectangular rib roughened solar air heater. But in present study heat transfer enhancement by providing elliptical ribs on absorber plate was analyzed by developing CFD code on non-commercial ANSYS (Fluent) 12.1 software.
      The simulations were performed on 2-D CFD model and analysis was carried out to study the effect of relative roughness width, relative roughness height and relative roughness pitch on heat transfer and friction factor. The Reynolds number range from 4000 to 15000 and turbulence phenomena is modeled by using Reynolds-average Navier-Stokes equations (RANS). The mathematical modeling is validated and compared with available results. The strong vortex formation takes place in the main stream flow because of elliptical roughness, which improved heat transfer augmentation in the solar air heater. The local turbulence kinetic energy strongly influenced by orientation of the elliptical ribs. The value of average Nusselt number increases by increasing relative roughness height but it decreases with the increase of relative roughness width and relative roughness pitch. The rib width has significant effects on heat transfer enhancement and maximum Nusselt number is observed for relatively small roughness width (i.e., 0.5) among the considered range of 0.5 mm to 2.0 mm.
      The maximum value of Nusselt number and friction factor is observed for relative roughness width of 0.5, relative roughness height of 0.045, and relative roughness pitch of 6.

      더보기

      참고문헌 (Reference)

      1 B. N. Prasad, "Thermal performance of artificially roughened solar air heaters" 91 : 59-67, 2013

      2 R. Kumar, "Thermal and fluid dynamic characteristics of flow through triangular crosssectional duct: A review" 61 : 123-140, 2016

      3 H. S. Chung, "Study on the thermal and flow characteristics on the periodically arranged semi-circular ribs in a rectangular channel" 27 : 56-71, 2014

      4 W. W. S. Charters, "Some aspects of flow duct design for solar-air heater applications" 13 : 283-288, 1971

      5 V. S. Hans, "Performance of artificially roughened solar air heaters – a review" 13 (13): 1854-1869, 2009

      6 B. N. Prasad, "Optimal thermohydraulic performance of artificially roughened solar air heaters" 47 (47): 91-96, 1991

      7 S. V. Patankar, "Numerical heat transfer and fluid flow" Hemisphere 1980

      8 J. P. Abraham, "Heat transfer in all pipe flow regimes: laminar, transitional/ intermittent, and turbulent" 52 : 557-563, 2009

      9 R. L. Webb, "Heat transfer and friction in tubes with repeated-rib roughness" 14 : 601-617, 1971

      10 Alok Chaube, "Heat transfer and friction factor enhancement in a square channel having integral inclined discrete ribs on two opposite walls" 대한기계학회 28 (28): 1927-1937, 2014

      1 B. N. Prasad, "Thermal performance of artificially roughened solar air heaters" 91 : 59-67, 2013

      2 R. Kumar, "Thermal and fluid dynamic characteristics of flow through triangular crosssectional duct: A review" 61 : 123-140, 2016

      3 H. S. Chung, "Study on the thermal and flow characteristics on the periodically arranged semi-circular ribs in a rectangular channel" 27 : 56-71, 2014

      4 W. W. S. Charters, "Some aspects of flow duct design for solar-air heater applications" 13 : 283-288, 1971

      5 V. S. Hans, "Performance of artificially roughened solar air heaters – a review" 13 (13): 1854-1869, 2009

      6 B. N. Prasad, "Optimal thermohydraulic performance of artificially roughened solar air heaters" 47 (47): 91-96, 1991

      7 S. V. Patankar, "Numerical heat transfer and fluid flow" Hemisphere 1980

      8 J. P. Abraham, "Heat transfer in all pipe flow regimes: laminar, transitional/ intermittent, and turbulent" 52 : 557-563, 2009

      9 R. L. Webb, "Heat transfer and friction in tubes with repeated-rib roughness" 14 : 601-617, 1971

      10 Alok Chaube, "Heat transfer and friction factor enhancement in a square channel having integral inclined discrete ribs on two opposite walls" 대한기계학회 28 (28): 1927-1937, 2014

      11 G. Bharadwaj, "Heat transfer and friction characteristics of an equilateral triangular solar air heater duct using inclined continuous ribs as roughness element on the absorber plate" 32 (32): 515-530, 2013

      12 A. Kumar, "Heat transfer and fluid flow characteristics in air duct with various V-pattern rib roughness on the heated plate: A comparative study" 103 : 75-85, 2016

      13 N. K. Pandey, "Experimental investigation of heat transfer and friction factor characteristics of arcshaped roughness elements having central gaps on absorber plate of solar air heater" 138 : 041005-1-041005-8, 2016

      14 Y. Rao, "Experimental and numerical investigation of impingement heat transfer on the surface with micro W-shaped ribs" 93 : 683-694, 2016

      15 V. B. Gawande, "Experimental and CFD investigation of convection heat transfer in solar air heater with reverse L-shaped ribs" 131 : 275-295, 2016

      16 A. N. Al-Shamani, "Enhancement heat transfer characteristics in the channel with trapezoidal rib-groove using nanofluids" 5 : 48-58, 2015

      17 Rajneesh Kumar, "Computational fluid dynamics based study for analyzing heat transfer and friction factor in semi-circular rib-roughened equilateral triangular duct" Emerald 27 (27): 941-957, 2017

      18 C. K. Lee, "Computational analysis of heat transfer in turbulent flow past a horizontal surface with two-dimensional ribs" 28 (28): 161-170, 2001

      19 S. Kumar, "CFD based performance analysis of solar air heater duct provided with artificial roughness" 34 : 1285-1291, 2009

      20 A. Boulemtafes-Boukadoum, "CFD based analysis of heat transfer enhancement in solar air heater provided with transverse rectangular ribs" 50 : 761-772, 2014

      21 A. Chaube, "Analysis of heat transfer augmentation and flow characteristics due to rib roughness over absorber plate of a solar air heater" 31 : 317-331, 2006

      22 "ASHRAE standard 93, Methods of testing to determine the thermal performance of solar collectors"

      23 "ANSYS Fluent 12.0, Documentation"

      24 Varun, R., "A review on roughness geometry used in solar air heaters" 81 : 1340-1350, 2007

      25 V. Gawande, "A review of CFD methodology used in literature for predicting thermo-hydraulic performance of roughened solar air heater" 54 : 550-605, 2016

      26 A. S. Yadav, "A numerical investigation of turbulent flows through an artificial roughened solar air heater" 65 : 679-698, 2014

      27 A. S. Yadav, "A CFD (computaional fluid dynamics) based heat transfer and fluid flow analysis of solar air heater provided with circular transverse wire rib roughness on the absorber plate" 55 : 1127-1142, 2013

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼