RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      MULTI-DEGREE REDUCTION OF B¶EZIER CURVES WITH CONSTRAINTS OF ENDPOINTS USING LAGRANGE MULTIPLIERS

      한글로보기

      https://www.riss.kr/link?id=A103561322

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, we consider multi-degree reduction of B¶ezier curves with continuity of any (r; s) order with respect to L2 norm. With help of matrix theory about generalized inverses we can use Lagrange multipliers to obtain the degree reduction matrix in a very simple form as well as the degree reduced control points. Also error analysis comparing with the least squares degree reduction without constraints is given. The advantage of our method is that the relationship between the optimal multi-degree reductions with and without constraints of continuity can be derived explicitly.
      번역하기

      In this paper, we consider multi-degree reduction of B¶ezier curves with continuity of any (r; s) order with respect to L2 norm. With help of matrix theory about generalized inverses we can use Lagrange multipliers to obtain the degree reduction matr...

      In this paper, we consider multi-degree reduction of B¶ezier curves with continuity of any (r; s) order with respect to L2 norm. With help of matrix theory about generalized inverses we can use Lagrange multipliers to obtain the degree reduction matrix in a very simple form as well as the degree reduced control points. Also error analysis comparing with the least squares degree reduction without constraints is given. The advantage of our method is that the relationship between the optimal multi-degree reductions with and without constraints of continuity can be derived explicitly.

      더보기

      참고문헌 (Reference)

      1 D. Lutterkort, "Polynomial degree reduction in the L2norm equals best euclidean approximation of Bezier coe±cients" 16 : 607-612, 1999

      2 G.-D. Chen, "Optimal multi-degree reduction of B¶ezier curves with constraints of endpoints continuity" 19 : 365-377, 2002

      3 A. Rababah, "Multiple degree reduction and elevation of Bezier curves using Jacobi-Bernstein basis transformations," 28 (28): 1170-1196, 2007

      4 H. Sunwoo, "Multi-degree reduction of Bezier curves for fixed endpoints using Lagrange multipliers" 32 : 331-341, 2013

      5 H. Sunwoo, "Matrix presentation for multi-degree reduction of Bezier curves" 22 : 261-273, 2005

      6 S. R. Searle, "Matrix Algebra Useful for Statistics" Wiley-Interscience 2006

      7 R. T. Farouki, "Legendre-Bernstein basis transformations" 119 : 145-160, 2000

      8 M. Eck, "Least squares degree reduction of Bezier curves" 27 : 845-851, 1995

      9 A. R. Forrest, "Interactive interpolation and approximation by Bezier polynomi-als" 15 : 71-79, 1972

      10 S. L. Campbell, "Generalized inverses of linear transfor-mations" Dover Publications, Inc 1979

      1 D. Lutterkort, "Polynomial degree reduction in the L2norm equals best euclidean approximation of Bezier coe±cients" 16 : 607-612, 1999

      2 G.-D. Chen, "Optimal multi-degree reduction of B¶ezier curves with constraints of endpoints continuity" 19 : 365-377, 2002

      3 A. Rababah, "Multiple degree reduction and elevation of Bezier curves using Jacobi-Bernstein basis transformations," 28 (28): 1170-1196, 2007

      4 H. Sunwoo, "Multi-degree reduction of Bezier curves for fixed endpoints using Lagrange multipliers" 32 : 331-341, 2013

      5 H. Sunwoo, "Matrix presentation for multi-degree reduction of Bezier curves" 22 : 261-273, 2005

      6 S. R. Searle, "Matrix Algebra Useful for Statistics" Wiley-Interscience 2006

      7 R. T. Farouki, "Legendre-Bernstein basis transformations" 119 : 145-160, 2000

      8 M. Eck, "Least squares degree reduction of Bezier curves" 27 : 845-851, 1995

      9 A. R. Forrest, "Interactive interpolation and approximation by Bezier polynomi-als" 15 : 71-79, 1972

      10 S. L. Campbell, "Generalized inverses of linear transfor-mations" Dover Publications, Inc 1979

      11 R. M. Pringle, "Generalized inverse matrices with applications to Statistics" Charles Griffin & Co. Ltd 1971

      12 B. G. Lee, "Distance for Bezier curves and degree reduction" 56 : 507-515, 1997

      13 B. G. Lee, "Application of Legendre-Bernstein basis trans-formations to degree elevation and degree reduction" 19 : 709-718, 2002

      14 G. Farin, "Algorithms for rational Bezier curves" 15 : 73-77, 1983

      15 A. Rababah, "A simple matrix form for degree reduction of Bezier curves using Chebyshev-Bernstein basis transformations" 181 : 310-318, 2006

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2007-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2005-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.14 0.14 0.13
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.11 0.1 0.356 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼