RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS KCI등재 SCIE

      Insulin resistance mediates high-fat diet-induced pulmonary fibrosis and airway hyperresponsiveness through the TGF-β1 pathway

      한글로보기

      https://www.riss.kr/link?id=A107721819

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <▼1><P>Prior studies have reported the presence of lung fibrosis and enhanced airway hyperresponsiveness (AHR) in mice with high-fat-diet (HFD)-induced obesity. This study evaluated the role of TGF-β1 in HFD-induced AHR and lung fibrosis in a murine model. We generated HFD-induced obesity mice and performed glucose and insulin tolerance tests. HFD mice with or without ovalbumin sensitization and challenge were also treated with an anti-TGF-β1 neutralizing antibody. AHR to methacholine, inflammatory cells in the bronchoalveolar lavage fluid (BALF), and histological features were evaluated. Insulin was intranasally administered to normal diet (ND) mice, and in vitro insulin stimulation of BEAS-2b cells was performed. HFD-induced obesity mice had increased insulin resistance, enhanced AHR, peribronchial and perivascular fibrosis, and increased numbers of macrophages in the BALF. However, they did not have meaningful eosinophilic or neutrophilic inflammation in the lungs compared with ND mice. The HFD enhanced TGF-β1 expression in the bronchial epithelium, but we found no differences in the expression of interleukin (IL)−4 or IL-5 in lung homogenates. Administration of the anti-TGF-β1 antibody attenuated HFD-induced AHR and lung fibrosis. It also attenuated goblet cell hyperplasia, but did not affect the AHR and inflammatory cell infiltration induced by OVA challenge. The intranasal administration of insulin enhanced TGF-β1 expression in the bronchial epithelium and lung fibrosis. Stimulating BEAS-2b cells with insulin also increased TGF-β1 production by 24 h. We concluded that HFD-induced obesity-associated insulin resistance enhances TGF-β1 expression in the bronchial epithelium, which may play an important role in the development of lung fibrosis and AHR in obesity.</P></▼1><▼2><P><B>Obesity: A trigger for asthma onset</B></P><P>Insulin resistance may be an important causative factor underlying the increased risk of asthma and other respiratory issues in obese individuals. Obesity doubles the likelihood of developing asthma, with symptoms that are more difficult to control than in non-obese patients. The connection between these conditions is poorly understood, but researchers led by Jung-Won Park, Yonsei University College of Medicine, Seoul, South Korea, have identified a potential mechanism. They demonstrated that a signaling molecule called TGF-β1 contributes to airway sensitivity and tissue scarring in a mouse model of diet-induced obesity. Subsequent experiments showed that treatment with insulin also gives rise to increased TGF-β1 production in the mouse lung. Since insulin resistance is a common feature of obesity, resulting in abnormally high levels of circulating insulin, this could also account for the increased risk of respiratory problems.</P></▼2>
      번역하기

      <▼1><P>Prior studies have reported the presence of lung fibrosis and enhanced airway hyperresponsiveness (AHR) in mice with high-fat-diet (HFD)-induced obesity. This study evaluated the role of TGF-β1 in HFD-induced AHR and lung fib...

      <▼1><P>Prior studies have reported the presence of lung fibrosis and enhanced airway hyperresponsiveness (AHR) in mice with high-fat-diet (HFD)-induced obesity. This study evaluated the role of TGF-β1 in HFD-induced AHR and lung fibrosis in a murine model. We generated HFD-induced obesity mice and performed glucose and insulin tolerance tests. HFD mice with or without ovalbumin sensitization and challenge were also treated with an anti-TGF-β1 neutralizing antibody. AHR to methacholine, inflammatory cells in the bronchoalveolar lavage fluid (BALF), and histological features were evaluated. Insulin was intranasally administered to normal diet (ND) mice, and in vitro insulin stimulation of BEAS-2b cells was performed. HFD-induced obesity mice had increased insulin resistance, enhanced AHR, peribronchial and perivascular fibrosis, and increased numbers of macrophages in the BALF. However, they did not have meaningful eosinophilic or neutrophilic inflammation in the lungs compared with ND mice. The HFD enhanced TGF-β1 expression in the bronchial epithelium, but we found no differences in the expression of interleukin (IL)−4 or IL-5 in lung homogenates. Administration of the anti-TGF-β1 antibody attenuated HFD-induced AHR and lung fibrosis. It also attenuated goblet cell hyperplasia, but did not affect the AHR and inflammatory cell infiltration induced by OVA challenge. The intranasal administration of insulin enhanced TGF-β1 expression in the bronchial epithelium and lung fibrosis. Stimulating BEAS-2b cells with insulin also increased TGF-β1 production by 24 h. We concluded that HFD-induced obesity-associated insulin resistance enhances TGF-β1 expression in the bronchial epithelium, which may play an important role in the development of lung fibrosis and AHR in obesity.</P></▼1><▼2><P><B>Obesity: A trigger for asthma onset</B></P><P>Insulin resistance may be an important causative factor underlying the increased risk of asthma and other respiratory issues in obese individuals. Obesity doubles the likelihood of developing asthma, with symptoms that are more difficult to control than in non-obese patients. The connection between these conditions is poorly understood, but researchers led by Jung-Won Park, Yonsei University College of Medicine, Seoul, South Korea, have identified a potential mechanism. They demonstrated that a signaling molecule called TGF-β1 contributes to airway sensitivity and tissue scarring in a mouse model of diet-induced obesity. Subsequent experiments showed that treatment with insulin also gives rise to increased TGF-β1 production in the mouse lung. Since insulin resistance is a common feature of obesity, resulting in abnormally high levels of circulating insulin, this could also account for the increased risk of respiratory problems.</P></▼2>

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼