1 박준상, "제주 감귤 과수원에서의 이슬지속시간 예측 모델 평가" 한국농림기상학회 20 (20): 262-276, 2018
2 강대균, "온도와 강수를 이용하여 일별 일사량을 추정하기 위한 심층 신경망 모델 개발" 한국농림기상학회 21 (21): 85-96, 2019
3 최미희, "시간규모가 다른 Angstrom-Prescott 계수가 남한의 일별 일사량 추정에 미치는 영향" 한국농림기상학회 12 (12): 232-237, 2010
4 윤진일, "디지털 농업기후도 해설" 한국농림기상학회 12 (12): 63-73, 2010
5 윤진일, "농가맞춤형 기상서비스 시범사업" 한국농림기상학회 15 (15): 320-331, 2013
6 김대준, "기상청 동네예보의 영농활용도 증진을 위한 방안: 2. 강수량 분포 상세화" 한국농림기상학회 15 (15): 171-177, 2013
7 김수옥, "기상청 동네예보의 영농활용도 증진을 위한 방안 I. 기온역전조건의 국지기온 보정" 한국농림기상학회 15 (15): 76-84, 2013
8 현신우, "국내 일사량 추정을 위한 Angstrom-Prescott계수의 평가" 한국농림기상학회 18 (18): 221-232, 2016
9 김광수, "결로시간 예측을 위한 경험모형의 최적 기상변수" 한국농림기상학회 4 (4): 23-28, 2002
10 Stefanski, R., "World AgroMeterological Information Service (WAMIS)" 13 (13): 2007
11 Ojha, T., "Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges" 118 : 66-84, 2015
12 Coates, R. W., "Wireless sensor network with irrigation valve control" 96 : 13-22, 2013
13 Barnett, B. J., "Weather index insurance for agriculture and rural areas in lower-income countries" 89 (89): 1241-1247, 2007
14 Gleason, M. L., "Validation of a commercial system for remote estimation of wetness duration" 81 (81): 825-829, 1997
15 Jha, P. K., "Using daily data from seasonal forecasts in dynamic crop models for yield prediction: A case study for rice in Nepal’s Terai" 265 : 349-358, 2019
16 Foughali, K., "Using cloud IOT for disease prevention in precision agriculture" 130 : 575-582, 2018
17 Hansen, J. W., "Using a general circulation model to forecast regional wheat yields in northeast Australia" 127 (127): 77-92, 2004
18 Çelik, Ö., "The optimized artificial neural network model with Levenberg–Marquardt algorithm for global solar radiation estimation in Eastern Mediterranean Region of Turkey" 116 : 1-12, 2016
19 Kendon, M., "State of the UK climate 2018" 39 (39): 1-55, 2019
20 Kim, K. S., "Spatial portability of numerical models of leaf wetness duration based on empirical approaches" 150 (150): 871-880, 2010
21 Rad, C. -R., "Smart monitoring of potato crop: a cyber-physical system architecture model in the field of precision agriculture" 6 : 73-79, 2015
22 Zhu, W., "Retrievals of all-weather daytime air temperature from MODIS products" 189 : 152-163, 2017
23 Jang, K., "Retrievals of all-weather daily air temperature using MODIS and AMSR-E data" 6 (6): 8387-8404, 2014
24 Kim, Y., "Remote sensing and control of an irrigation system using a distributed wireless sensor network" 57 (57): 1379-1387, 2008
25 Pierce, F. J., "Regional and on-farm wireless sensor networks for agricultural systems in Eastern Washington" 61 (61): 32-43, 2008
26 Ivanov, S., "Precision farming : Sensor analytics" 30 (30): 76-80, 2015
27 Jensen, A. L., "Pl@nteInfo® — a web-based system for personalised decision support in crop management" 25 (25): 271-293, 2000
28 Mesas-Carrascosa, F. J., "Open source hardware to monitor environmental parameters in precision agriculture" 137 : 73-83, 2015
29 현신우, "ORYZA (v3) 모델을 사용한 벼 품종별 출수기 예측" 한국농림기상학회 19 (19): 246-251, 2017
30 Langendoen, K., "Murphy loves potatoes: Experiences from a pilot sensor network deployment in precision agriculture" IEEE 8-, 2006
31 Kim, K. S., "Model to enhance site-specific estimation of leaf wetness duration" 86 (86): 179-185, 2002
32 Tadesse, G., "Mobile phones and farmers’ marketing decisions in Ethiopia" 68 : 296-307, 2015
33 Adair, E. C., "Manure application decisions impact nitrous oxide and carbon dioxide emissions during mon-growing season thaws" 83 (83): 163-, 2019
34 유병현, "MODIS 대기자료를 활용한 남북한 기상관측소에서의 냉방도일 추정" 한국농림기상학회 21 (21): 97-109, 2019
35 Chavas, D. R., "Long-term climate change impacts on agricultural productivity in eastern China" 149 (149): 1118-1128, 2009
36 Davcev, D., "IoT agriculture system based on LoRaWAN"
37 Vuran, M. C., "Internet of underground things: Sensing and communications on the field for precision agriculture"
38 Stočes, M., "Internet of Things(IoT)in agriculture-Selected aspects" 8 (8): 83-88, 2016
39 Tzounis, A., "Internet of Things in agriculture, recent advances and future challenges" 164 : 31-48, 2017
40 Gubbi, J., "Internet of Things (IoT): A vision, architectural elements, and future directions" 29 (29): 1645-1660, 2013
41 김광수, "Impact Assessment of Climate Change by Using Cloud Computing" 한국농림기상학회 13 (13): 101-108, 2011
42 Hollis, D., "HadUK‐Grid—A new UK dataset of gridded climate observations" 2019
43 Bonomi, F., "Fog computing and its role in the internet of things" ACM 13-16, 2012
44 Vasisht, D., "Farmbeats: An iot platform for data-driven agriculture" 515-529, 2017
45 Prescott, J. A., "Evaporation from a water surface in relation to solar radiation" 46 : 114-118, 1940
46 Srbinovska, M., "Environmental parameters monitoring in precision agriculture using wireless sensor networks" 88 : 297-307, 2015
47 Nikolidakis, S. A., "Energy efficient automated control of irrigation in agriculture by using wireless sensor networks" 113 : 154-163, 2015
48 Besharat, F., "Empirical models for estimating global solar radiation: A review and case study" 21 : 798-821, 2013
49 Freebairn, J. W., "Economic benefits of meteorological services" 9 (9): 33-44, 2002
50 Kim, K. S., "Development and validation of a leaf wetness duration model using a fuzzy logic system" 127 (127): 53-64, 2004
51 Lee, C. -K., "Development and application of a weather data service client for preparation of weather input files to a crop model" 114 : 237-246, 2015
52 Lee, M.-h., "Design and implementation of wireless sensor network for ubiquitous glass houses"
53 Kulau, U., "Demo: PotatoNet -- Robust outdoor testbed for WSNs"
54 Zhao, G., "Demand for multi-scale weather data for regional crop modeling" 200 : 156-171, 2015
55 Thornton, P. E., "Daymet: Daily surface weather on a 1 km grid for North America, 1980-2008" Oak Ridge National Laboratory, Distributed Active Archive Center for Biogeochemical Dynamics 2008
56 Muller, C., "Crowdsourcing for climate and atmospheric sciences: current status and future potential" 35 (35): 3185-3203, 2015
57 Minet, J., "Crowdsourcing for agricultural applications:A review of uses and opportunities for a farmsourcing approach" 142 : 126-138, 2017
58 Bai, X., "Collaborative fusion estimation over wireless sensor networks for monitoring CO2 concentration in a greenhouse" 42 : 119-126, 2018
59 Ruane, A. C., "Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation" 200 : 233-248, 2015
60 Dimatteo, S., "Cellular traffic offloading through WiFi networks"
61 Mekala, M. S., "CLAY-MIST: IoT-cloud enabled CMM index for smart agriculture monitoring system" 134 : 236-244, 2019
62 Gutierrez, J., "Automated irrigation system using a wireless sensor network and GPRS module" 63 (63): 166-176, 2014
63 Rosenzweig, C., "Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison" 111 (111): 3268-3273, 2014
64 Popović, T., "Architecting an IoT-enabled platform for precision agriculture and ecological monitoring : A case study" 140 : 255-265, 2017
65 Frere, M., "Agrometeorological crop monitoring and forecasting"
66 Lee, M., "Agricultural production system based on IoT" 833-837, 2013
67 Reche, A., "A smart M2M deployment to control the agriculture irrigation" Springer 139-151, 2014
68 Madeira, A. C., "A simple cloud-based energy balance model to estimate dew" 111 (111): 55-63, 2002
69 Heble, S., "A low power IoT network for smart agriculture" 609-614, 2018
70 Running, S. W., "A continuous satellite-derived measure of global terrestrial primary production" 54 (54): 547-560, 2004
71 오재호, "4차 산업혁명 시대의 재난대응 민관협력 체계에 관한 연구 - 조기경보시스템에서 민간 전문가 역할을 중심으로 -" 위기관리 이론과 실천 14 (14): 57-75, 2018
72 송지애, "2014년 특별관측 기간 동안 청미천 농경지에서의 WRF/Noah-MP 고해상도 수치모의" 한국농림기상학회 17 (17): 384-398, 2015