1 황창하, "Variable selection in L1 penalized censored regression" 한국데이터정보과학회 22 (22): 951-959, 2011
2 Rosenwald, A., "The use of molecular proling to predict survival after chemotherapy for diuse large-B-cell lymphoma" 346 : 1937-1947, 2002
3 Tibshirani, R., "The lasso method for variable selection in the Cox model" 16 : 385-395, 1997
4 Hu, S., "Sparse penalization with censoring constraints for estimating high dimen-sional AFT models with applications to microarray data analysis" Case Western Reserve University 2010
5 Krishnapuram, B., "Sparse multinomial logistic regression : Fast algorithms and generalization bounds" 27 : 957-968, 2005
6 Ghosh, K. S., "Semiparametric accelerated failure time models for censored data" 15 : 213-229, 2006
7 Bair, E., "Semi-supervised methods to predict patient survival from gene expression data" 2 : 511-522, 2004
8 Huang, J., "Regularized estimation in the accelerated failure time model with high dimensional covariates" The University of Iowa 2005
9 Tibshirani, R., "Regression shrinkage and selection via the lasso" 58 : 267-288, 1996
10 Cox, D. R., "Regression models and life tables(with discussions)" 74 : 187-220, 1972
1 황창하, "Variable selection in L1 penalized censored regression" 한국데이터정보과학회 22 (22): 951-959, 2011
2 Rosenwald, A., "The use of molecular proling to predict survival after chemotherapy for diuse large-B-cell lymphoma" 346 : 1937-1947, 2002
3 Tibshirani, R., "The lasso method for variable selection in the Cox model" 16 : 385-395, 1997
4 Hu, S., "Sparse penalization with censoring constraints for estimating high dimen-sional AFT models with applications to microarray data analysis" Case Western Reserve University 2010
5 Krishnapuram, B., "Sparse multinomial logistic regression : Fast algorithms and generalization bounds" 27 : 957-968, 2005
6 Ghosh, K. S., "Semiparametric accelerated failure time models for censored data" 15 : 213-229, 2006
7 Bair, E., "Semi-supervised methods to predict patient survival from gene expression data" 2 : 511-522, 2004
8 Huang, J., "Regularized estimation in the accelerated failure time model with high dimensional covariates" The University of Iowa 2005
9 Tibshirani, R., "Regression shrinkage and selection via the lasso" 58 : 267-288, 1996
10 Cox, D. R., "Regression models and life tables(with discussions)" 74 : 187-220, 1972
11 Koul, H., "Regression analysis with randomly right censored data" 9 : 1276-1288, 1981
12 Kim, J., "Prediction of a time-to-event trait using genome wide SNP data" 14 : 58-, 2013
13 Geyer, C. J., "Practical Markov chain Monte Carlo(with discussion)" 7 : 473-511, 1992
14 Kaplan, E. L., "Nonparametric estimation from incomplete observations" 53 : 457-481, 1958
15 Zhou, M., "M-estimation in censored linear models" 79 : 837-841, 1992
16 Buckley, J., "Linear regression with censored data" 66 : 429-436, 1979
17 Orbe, J., "Censored partial regression" 4 : 109-121, 2003
18 Li, H., "Censored data regression in high-dimension and low-sample size settings for genomic appli-cations" University of Pennsylvania 2006
19 심주용, "A transductive least squares support vector machine with the difference convex algorithm" 한국데이터정보과학회 25 (25): 455-464, 2014
20 Sauerbrei, W., "A bootstrap resampling procedure for model building : Applica-tion to the Cox regression model" 11 : 2093-2099, 1992