RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Estimation and variable selection in censored regression model with smoothly clipped absolute deviation penalty

      한글로보기

      https://www.riss.kr/link?id=A103672865

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Smoothly clipped absolute deviation (SCAD) penalty is known to satisfy the desirable properties for penalty functions like as unbiasedness, sparsity and continuity. In this paper, we deal with the regression function estimation and variable selection based on SCAD penalized censored regression model. We use the local linear approximation and the iteratively reweighted least squares algorithm to solve SCAD penalized log likelihood function. The proposed method provides an efficient method for variable selection and regression function estimation. The generalized cross validation function is presented for the model selection. Applications of the proposed method are illustrated through the simulated and a real example.
      번역하기

      Smoothly clipped absolute deviation (SCAD) penalty is known to satisfy the desirable properties for penalty functions like as unbiasedness, sparsity and continuity. In this paper, we deal with the regression function estimation and variable selection ...

      Smoothly clipped absolute deviation (SCAD) penalty is known to satisfy the desirable properties for penalty functions like as unbiasedness, sparsity and continuity. In this paper, we deal with the regression function estimation and variable selection based on SCAD penalized censored regression model. We use the local linear approximation and the iteratively reweighted least squares algorithm to solve SCAD penalized log likelihood function. The proposed method provides an efficient method for variable selection and regression function estimation. The generalized cross validation function is presented for the model selection. Applications of the proposed method are illustrated through the simulated and a real example.

      더보기

      참고문헌 (Reference)

      1 황창하, "Variable selection in L1 penalized censored regression" 한국데이터정보과학회 22 (22): 951-959, 2011

      2 Rosenwald, A., "The use of molecular proling to predict survival after chemotherapy for diuse large-B-cell lymphoma" 346 : 1937-1947, 2002

      3 Tibshirani, R., "The lasso method for variable selection in the Cox model" 16 : 385-395, 1997

      4 Hu, S., "Sparse penalization with censoring constraints for estimating high dimen-sional AFT models with applications to microarray data analysis" Case Western Reserve University 2010

      5 Krishnapuram, B., "Sparse multinomial logistic regression : Fast algorithms and generalization bounds" 27 : 957-968, 2005

      6 Ghosh, K. S., "Semiparametric accelerated failure time models for censored data" 15 : 213-229, 2006

      7 Bair, E., "Semi-supervised methods to predict patient survival from gene expression data" 2 : 511-522, 2004

      8 Huang, J., "Regularized estimation in the accelerated failure time model with high dimensional covariates" The University of Iowa 2005

      9 Tibshirani, R., "Regression shrinkage and selection via the lasso" 58 : 267-288, 1996

      10 Cox, D. R., "Regression models and life tables(with discussions)" 74 : 187-220, 1972

      1 황창하, "Variable selection in L1 penalized censored regression" 한국데이터정보과학회 22 (22): 951-959, 2011

      2 Rosenwald, A., "The use of molecular proling to predict survival after chemotherapy for diuse large-B-cell lymphoma" 346 : 1937-1947, 2002

      3 Tibshirani, R., "The lasso method for variable selection in the Cox model" 16 : 385-395, 1997

      4 Hu, S., "Sparse penalization with censoring constraints for estimating high dimen-sional AFT models with applications to microarray data analysis" Case Western Reserve University 2010

      5 Krishnapuram, B., "Sparse multinomial logistic regression : Fast algorithms and generalization bounds" 27 : 957-968, 2005

      6 Ghosh, K. S., "Semiparametric accelerated failure time models for censored data" 15 : 213-229, 2006

      7 Bair, E., "Semi-supervised methods to predict patient survival from gene expression data" 2 : 511-522, 2004

      8 Huang, J., "Regularized estimation in the accelerated failure time model with high dimensional covariates" The University of Iowa 2005

      9 Tibshirani, R., "Regression shrinkage and selection via the lasso" 58 : 267-288, 1996

      10 Cox, D. R., "Regression models and life tables(with discussions)" 74 : 187-220, 1972

      11 Koul, H., "Regression analysis with randomly right censored data" 9 : 1276-1288, 1981

      12 Kim, J., "Prediction of a time-to-event trait using genome wide SNP data" 14 : 58-, 2013

      13 Geyer, C. J., "Practical Markov chain Monte Carlo(with discussion)" 7 : 473-511, 1992

      14 Kaplan, E. L., "Nonparametric estimation from incomplete observations" 53 : 457-481, 1958

      15 Zhou, M., "M-estimation in censored linear models" 79 : 837-841, 1992

      16 Buckley, J., "Linear regression with censored data" 66 : 429-436, 1979

      17 Orbe, J., "Censored partial regression" 4 : 109-121, 2003

      18 Li, H., "Censored data regression in high-dimension and low-sample size settings for genomic appli-cations" University of Pennsylvania 2006

      19 심주용, "A transductive least squares support vector machine with the difference convex algorithm" 한국데이터정보과학회 25 (25): 455-464, 2014

      20 Sauerbrei, W., "A bootstrap resampling procedure for model building : Applica-tion to the Cox regression model" 11 : 2093-2099, 1992

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 계속평가 신청대상 (등재유지)
      2017-01-01 평가 우수등재학술지 선정 (계속평가)
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 유지 (등재후보2차) KCI등재후보
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.18 1.18 1.07
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.01 0.91 0.911 0.35
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼