RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI우수등재

      자연어처리 분야에서의 임베딩 모델 평가 연구 = Study on the Evaluation of Embedding Models in the Natural Language Processing

      한글로보기

      https://www.riss.kr/link?id=A109559395

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 논문에서는 자연어처리(NLP) 분야의 주요 과제인 유사 텍스트 분석, 텍스트 분류, 질의 응답, 군집 분석 과제에 임베딩 기술을 적용하고, 그 성능을 평가하였다. 최근, 자연어처리 분야에서는 대규모 언어 모델의 발전과 함께 임베딩 기술이 다양한 응용 분야에서 중요한 역할을 하고 있다. 현재까지 여러 종류의 임베딩 모델이 공개되었고, 본 논문에서는 공개된 여러 임베딩 모델에 대한 성능을 평가했다. 이를 위해, 선정한 각 과제의 중간 과정으로써 임베딩 모델을 통한 벡터 값을 활용하여 각 과제별 임베딩 모델의 성능을 평가한다. 실험 데이터 셋은 공개된 한국어 및 영어 데이터 셋을 활용하였고, NLP 과제는 5가지로 정의하였다. 특히, 다국어, 교차 언어, 긴 문서 검색 등에서 탁월한 성능을 보인 BGE-M3 모델의 성능에 주목했다. 실험 결과, BG3-M3 모델이 3개의 NLP 과제에서 우수한 성능을 보였다. 본 연구의 결과는 최근의 검색 증강 생성(Retrieval-Augmented Generation)에서 유사 문장 또는 유사 문서를 찾기 위해 활용되는 임베딩 모델을 선택하는 데 있어 방향을 제시할 것으로 기대한다.
      번역하기

      본 논문에서는 자연어처리(NLP) 분야의 주요 과제인 유사 텍스트 분석, 텍스트 분류, 질의 응답, 군집 분석 과제에 임베딩 기술을 적용하고, 그 성능을 평가하였다. 최근, 자연어처리 분야에서...

      본 논문에서는 자연어처리(NLP) 분야의 주요 과제인 유사 텍스트 분석, 텍스트 분류, 질의 응답, 군집 분석 과제에 임베딩 기술을 적용하고, 그 성능을 평가하였다. 최근, 자연어처리 분야에서는 대규모 언어 모델의 발전과 함께 임베딩 기술이 다양한 응용 분야에서 중요한 역할을 하고 있다. 현재까지 여러 종류의 임베딩 모델이 공개되었고, 본 논문에서는 공개된 여러 임베딩 모델에 대한 성능을 평가했다. 이를 위해, 선정한 각 과제의 중간 과정으로써 임베딩 모델을 통한 벡터 값을 활용하여 각 과제별 임베딩 모델의 성능을 평가한다. 실험 데이터 셋은 공개된 한국어 및 영어 데이터 셋을 활용하였고, NLP 과제는 5가지로 정의하였다. 특히, 다국어, 교차 언어, 긴 문서 검색 등에서 탁월한 성능을 보인 BGE-M3 모델의 성능에 주목했다. 실험 결과, BG3-M3 모델이 3개의 NLP 과제에서 우수한 성능을 보였다. 본 연구의 결과는 최근의 검색 증강 생성(Retrieval-Augmented Generation)에서 유사 문장 또는 유사 문서를 찾기 위해 활용되는 임베딩 모델을 선택하는 데 있어 방향을 제시할 것으로 기대한다.

      더보기

      다국어 초록 (Multilingual Abstract)

      This paper applies embedding techniques to key tasks in the field of Natural Language Processing (NLP), including semantic textual search, text classification, question answering, and clustering, and evaluates their performance. Recently, with the advancement of large-scale language models, embedding technologies have played a crucial role in various NLP applications. Several types of embedding models have been publicly released, and this paper assesses the performance of these models. For this evaluation, vector representations generated by embedding models were used as an intermediate step for each selected task. The experiments utilized publicly available Korean and English datasets, and five NLP tasks were defined. Notably, the BGE-M3 model, which demonstrated exceptional performance in multilingual, cross-lingual, and long-document retrieval tasks, was a key focus of this study. The experimental results show that the BGE-M3 model outperforms other models in three of the evaluated NLP tasks. The findings of this research are expected to provide guidance in selecting embedding models for identifying similar sentences or documents in recent Retrieval-Augmented Generation (RAG) applications.
      번역하기

      This paper applies embedding techniques to key tasks in the field of Natural Language Processing (NLP), including semantic textual search, text classification, question answering, and clustering, and evaluates their performance. Recently, with the adv...

      This paper applies embedding techniques to key tasks in the field of Natural Language Processing (NLP), including semantic textual search, text classification, question answering, and clustering, and evaluates their performance. Recently, with the advancement of large-scale language models, embedding technologies have played a crucial role in various NLP applications. Several types of embedding models have been publicly released, and this paper assesses the performance of these models. For this evaluation, vector representations generated by embedding models were used as an intermediate step for each selected task. The experiments utilized publicly available Korean and English datasets, and five NLP tasks were defined. Notably, the BGE-M3 model, which demonstrated exceptional performance in multilingual, cross-lingual, and long-document retrieval tasks, was a key focus of this study. The experimental results show that the BGE-M3 model outperforms other models in three of the evaluated NLP tasks. The findings of this research are expected to provide guidance in selecting embedding models for identifying similar sentences or documents in recent Retrieval-Augmented Generation (RAG) applications.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼