본 논문에서는 자연어처리(NLP) 분야의 주요 과제인 유사 텍스트 분석, 텍스트 분류, 질의 응답, 군집 분석 과제에 임베딩 기술을 적용하고, 그 성능을 평가하였다. 최근, 자연어처리 분야에서...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
국문 초록 (Abstract)
본 논문에서는 자연어처리(NLP) 분야의 주요 과제인 유사 텍스트 분석, 텍스트 분류, 질의 응답, 군집 분석 과제에 임베딩 기술을 적용하고, 그 성능을 평가하였다. 최근, 자연어처리 분야에서...
본 논문에서는 자연어처리(NLP) 분야의 주요 과제인 유사 텍스트 분석, 텍스트 분류, 질의 응답, 군집 분석 과제에 임베딩 기술을 적용하고, 그 성능을 평가하였다. 최근, 자연어처리 분야에서는 대규모 언어 모델의 발전과 함께 임베딩 기술이 다양한 응용 분야에서 중요한 역할을 하고 있다. 현재까지 여러 종류의 임베딩 모델이 공개되었고, 본 논문에서는 공개된 여러 임베딩 모델에 대한 성능을 평가했다. 이를 위해, 선정한 각 과제의 중간 과정으로써 임베딩 모델을 통한 벡터 값을 활용하여 각 과제별 임베딩 모델의 성능을 평가한다. 실험 데이터 셋은 공개된 한국어 및 영어 데이터 셋을 활용하였고, NLP 과제는 5가지로 정의하였다. 특히, 다국어, 교차 언어, 긴 문서 검색 등에서 탁월한 성능을 보인 BGE-M3 모델의 성능에 주목했다. 실험 결과, BG3-M3 모델이 3개의 NLP 과제에서 우수한 성능을 보였다. 본 연구의 결과는 최근의 검색 증강 생성(Retrieval-Augmented Generation)에서 유사 문장 또는 유사 문서를 찾기 위해 활용되는 임베딩 모델을 선택하는 데 있어 방향을 제시할 것으로 기대한다.
다국어 초록 (Multilingual Abstract)
This paper applies embedding techniques to key tasks in the field of Natural Language Processing (NLP), including semantic textual search, text classification, question answering, and clustering, and evaluates their performance. Recently, with the adv...
This paper applies embedding techniques to key tasks in the field of Natural Language Processing (NLP), including semantic textual search, text classification, question answering, and clustering, and evaluates their performance. Recently, with the advancement of large-scale language models, embedding technologies have played a crucial role in various NLP applications. Several types of embedding models have been publicly released, and this paper assesses the performance of these models. For this evaluation, vector representations generated by embedding models were used as an intermediate step for each selected task. The experiments utilized publicly available Korean and English datasets, and five NLP tasks were defined. Notably, the BGE-M3 model, which demonstrated exceptional performance in multilingual, cross-lingual, and long-document retrieval tasks, was a key focus of this study. The experimental results show that the BGE-M3 model outperforms other models in three of the evaluated NLP tasks. The findings of this research are expected to provide guidance in selecting embedding models for identifying similar sentences or documents in recent Retrieval-Augmented Generation (RAG) applications.
노이즈가 추가된 입력에서 멀티 모달 오디오 비주얼 객체 분할 모델의 성능 개선
서비스 품질 연구에 대한 모바일 에지 컴퓨팅의 이동성 중심 고찰
한국어 소형 거대 언어 모델의 차트 이미지 설명 텍스트 생성 가능성에 관한 실험적 연구