RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      강원도 관광에 대한 소셜 미디어 빅데이터 분석

      한글로보기

      https://www.riss.kr/link?id=A107769153

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      최근 소셜미디어에서 관광지에 관한 게시글과 의견이 활발하게 공유된다. 이러한 소셜 빅데이터는 소비자가 인식하는 관광지의 객관적인 이미지를 파악할 수 있는 유의미한 정보를 제공한다. 이에 따라 본 연구는 소셜미디어의 빅데이터를 이용해서 강원도 지역에 대한 관광 이미지를 분석하는 것이다. SNS 및 빅데이터의 대표적인 분석 방법인 텍스트마이닝과 의미연결망 분석 절차를 사용해서 강원도의 관광 이미지를 분석하고 차별화된 경쟁력을 확보할 수 있는 이미지 향상에 대한 방안을 제공하고자 하였다. 분석결과에 따르면, 강원도 지역의 관광으로 속초, 강릉, 양양 순으로 지명 언급이 높은 수준으로 나타났고, 여행목적은 맛집투어, 식도락, 가족여행, 휴가, 체험 등으로 나타났다. 특히, 당일여행, 주말, 체험 등을 선호하는 것으로 나타났다. 분석결과를 바탕으로 네 가지 제안을 하였다. 첫째, 강원도 관광의 활성화를 위하여 가격대별로 다양한 호텔, 숙박 시설과 체험 관광 마케팅이 필요하다. 둘째, 강원도의 자연경관과 수도권 근접성을 활용한 당일상품을 개발할 필요가 있다. 셋째, 강원도 향토음식과 전통식당의 홍보가 필요하다. 마지막으로 힐링과 가족여행에 적합한 관광 마케팅 개발이 필요하다. 본 연구 결과를 통해 강원도의 관광 이미지를 현황을 파악하고 경쟁력을 향상할 수 있는 마케팅 전략을 제시하였다. 또한, 관광 소비자의 빅데이터를 관광사업 분야에서 활용할 수 있는 이론적 근거를 제공하였다.
      번역하기

      최근 소셜미디어에서 관광지에 관한 게시글과 의견이 활발하게 공유된다. 이러한 소셜 빅데이터는 소비자가 인식하는 관광지의 객관적인 이미지를 파악할 수 있는 유의미한 정보를 제공한...

      최근 소셜미디어에서 관광지에 관한 게시글과 의견이 활발하게 공유된다. 이러한 소셜 빅데이터는 소비자가 인식하는 관광지의 객관적인 이미지를 파악할 수 있는 유의미한 정보를 제공한다. 이에 따라 본 연구는 소셜미디어의 빅데이터를 이용해서 강원도 지역에 대한 관광 이미지를 분석하는 것이다. SNS 및 빅데이터의 대표적인 분석 방법인 텍스트마이닝과 의미연결망 분석 절차를 사용해서 강원도의 관광 이미지를 분석하고 차별화된 경쟁력을 확보할 수 있는 이미지 향상에 대한 방안을 제공하고자 하였다. 분석결과에 따르면, 강원도 지역의 관광으로 속초, 강릉, 양양 순으로 지명 언급이 높은 수준으로 나타났고, 여행목적은 맛집투어, 식도락, 가족여행, 휴가, 체험 등으로 나타났다. 특히, 당일여행, 주말, 체험 등을 선호하는 것으로 나타났다. 분석결과를 바탕으로 네 가지 제안을 하였다. 첫째, 강원도 관광의 활성화를 위하여 가격대별로 다양한 호텔, 숙박 시설과 체험 관광 마케팅이 필요하다. 둘째, 강원도의 자연경관과 수도권 근접성을 활용한 당일상품을 개발할 필요가 있다. 셋째, 강원도 향토음식과 전통식당의 홍보가 필요하다. 마지막으로 힐링과 가족여행에 적합한 관광 마케팅 개발이 필요하다. 본 연구 결과를 통해 강원도의 관광 이미지를 현황을 파악하고 경쟁력을 향상할 수 있는 마케팅 전략을 제시하였다. 또한, 관광 소비자의 빅데이터를 관광사업 분야에서 활용할 수 있는 이론적 근거를 제공하였다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Recently, posts and opinions on tourist attractions are actively shared on social media. These social big data provide meaningful information to identify objective images of tourist destinations recognized by consumers. Therefore, an in-depth understanding of the tourist image is possible by analyzing these big data on tourism. The study is to analyze destination images in Gangwon-do using big data from social media. It is wanted to understand destination images in Gangwon-do using semantic network analysis and then provided suggestions on how to enhance image to secure differentiated competitiveness as a destination for tourists. According to the frequency analysis results, as tourism in Gangwon-do, Sokcho, Gangneung, and Yangyang were mentioned at a high level in that order, and the purpose of travel was restaurant tour, gourmet food, family trip, vacation, and experience. In particular, it was found that they preferred day trips, weekends, and experiences. Four suggestions were made based on the results. First, it is necessary to develop various types of hotels, accommodation facilities and experience-oriented tour packages. Second, it is necessary to develop a day-to-day travel package that utilizes proximity to the Seoul metropolitan area. Third, it is necessary to promote traditional restaurants and local food. Finally, it is necessary to develop tourist package suitable for healing and family travel. Through this research, the destination image of Gangwon-do was identified and a tourism marketing strategy was presented to improve competitiveness. It also provided a theoretical basis for the use of the big data of tourism consumers in the field of tourism business.
      번역하기

      Recently, posts and opinions on tourist attractions are actively shared on social media. These social big data provide meaningful information to identify objective images of tourist destinations recognized by consumers. Therefore, an in-depth understa...

      Recently, posts and opinions on tourist attractions are actively shared on social media. These social big data provide meaningful information to identify objective images of tourist destinations recognized by consumers. Therefore, an in-depth understanding of the tourist image is possible by analyzing these big data on tourism. The study is to analyze destination images in Gangwon-do using big data from social media. It is wanted to understand destination images in Gangwon-do using semantic network analysis and then provided suggestions on how to enhance image to secure differentiated competitiveness as a destination for tourists. According to the frequency analysis results, as tourism in Gangwon-do, Sokcho, Gangneung, and Yangyang were mentioned at a high level in that order, and the purpose of travel was restaurant tour, gourmet food, family trip, vacation, and experience. In particular, it was found that they preferred day trips, weekends, and experiences. Four suggestions were made based on the results. First, it is necessary to develop various types of hotels, accommodation facilities and experience-oriented tour packages. Second, it is necessary to develop a day-to-day travel package that utilizes proximity to the Seoul metropolitan area. Third, it is necessary to promote traditional restaurants and local food. Finally, it is necessary to develop tourist package suitable for healing and family travel. Through this research, the destination image of Gangwon-do was identified and a tourism marketing strategy was presented to improve competitiveness. It also provided a theoretical basis for the use of the big data of tourism consumers in the field of tourism business.

      더보기

      목차 (Table of Contents)

      • 요약
      • Abstract
      • 1. 서론
      • 2. 이론적 배경
      • 3. 연구설계
      • 요약
      • Abstract
      • 1. 서론
      • 2. 이론적 배경
      • 3. 연구설계
      • 4. 분석결과
      • 5. 결론
      • REFERENCES
      더보기

      참고문헌 (Reference)

      1 류시영, "소셜미디어에 나타난 강원도 관광에 대한 인식 연구: 빅데이터 분석을 중심으로" 한국관광연구학회 31 (31): 63-81, 2017

      2 임종훈, "소셜미디어 빅데이터 분석을 활용한 익산 관광 인식에 관한 연구" 한국관광산업학회 45 (45): 427-441, 2020

      3 최우성, "소셜 미디어 빅데이터 분석을 통한 복합리조트 인식에 관한 연구" 한국관광산업학회 44 (44): 355-371, 2019

      4 오익근, "빅데이터 분석을 통한 한국관광 인식에 관한 연구" 한국관광학회 39 (39): 107-126, 2015

      5 "Textorm"

      6 김소윤, "SNS를 통해 표출된 여행경험 콘텐츠에 관한 탐색적 고찰" 한국관광연구학회 28 (28): 5-15, 2014

      7 Gyeonggi Research Institute, "Research on Gyeonggi Tourism Trend through Social Media Analysis" 2015

      8 S. Y. Ryu, "A study on the development of tourism industry in Gangwon-do using big data analysis" Bank of Korea Gangwon Headquarters 2016

      9 Ministry of Culture, Sports and Tourism, "2019 Korea National Tourism Survey" 2021

      1 류시영, "소셜미디어에 나타난 강원도 관광에 대한 인식 연구: 빅데이터 분석을 중심으로" 한국관광연구학회 31 (31): 63-81, 2017

      2 임종훈, "소셜미디어 빅데이터 분석을 활용한 익산 관광 인식에 관한 연구" 한국관광산업학회 45 (45): 427-441, 2020

      3 최우성, "소셜 미디어 빅데이터 분석을 통한 복합리조트 인식에 관한 연구" 한국관광산업학회 44 (44): 355-371, 2019

      4 오익근, "빅데이터 분석을 통한 한국관광 인식에 관한 연구" 한국관광학회 39 (39): 107-126, 2015

      5 "Textorm"

      6 김소윤, "SNS를 통해 표출된 여행경험 콘텐츠에 관한 탐색적 고찰" 한국관광연구학회 28 (28): 5-15, 2014

      7 Gyeonggi Research Institute, "Research on Gyeonggi Tourism Trend through Social Media Analysis" 2015

      8 S. Y. Ryu, "A study on the development of tourism industry in Gangwon-do using big data analysis" Bank of Korea Gangwon Headquarters 2016

      9 Ministry of Culture, Sports and Tourism, "2019 Korea National Tourism Survey" 2021

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2016-01-01 평가 등재후보학술지 유지 (계속평가) KCI등재후보
      2014-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.32 0.32 0
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0 0 0 0.1
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼