Intramolecular excimerization of 1,3-di(1-pyrenyl)propane (Py-3-Py) and fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) were used to examine the effects of ethanol on the rate and range of lateral diffusion of bulk bilayer structures ...
Intramolecular excimerization of 1,3-di(1-pyrenyl)propane (Py-3-Py) and fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) were used to examine the effects of ethanol on the rate and range of lateral diffusion of bulk bilayer structures of plasma membrane vesicles isolated from cultured mouse myeloma cell line Sp2/0-Ag14 (Sp2/0-PMV). In a concentration-dependent manner, ethanol increased the excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py in the Sp2/0-PMV and decreased the anisotropy (r), limiting anisotropy $(r_{\infty})$, and order parameter (S) of DPH in the Sp2/0-PMV. This indicates that ethanol increased both the lateral and rotational diffusion of the probes in the Sp2/0-PMV. Selective quenching of DPH by trinitrophenyl groups was utilized to examine the transbilayer asymmetric rotational diffusion of the Sp2/0-PMV. The anisotropy (r), limiting anisotropy $(r_{\infty})$, and order parameter (S) of DPH in the inner monolayer were 0.022, 0.029, and 0.063, respectively, greater than calculated for the outer monolayer of the Sp2/0-PMV. Selective quenching of DPH by trinitrophenyl groups was also utilized to examine the transbilayer asymmetric effects of ethanol on the range of rotational diffusion of the Sp2/0-PMV. Ethanol had a greater fluidizing effect on the outer monolayer as compared to the inner monolayer of the Sp2/0-PMV. It has been proven that ethanol exhibits a selective rather than nonselective fluidizing effect within transbilayer domains of the Sp2/0-PMV.