RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재후보

      Variable Selection Procedures in Competing-Risks Models Using Penalized Likelihood

      한글로보기

      https://www.riss.kr/link?id=A103639602

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Competing risks data commonly arise when an occurrence of an event precludes other type of events from being observed. Recently, competing-risks models with frailty have been studied for clustered competing-risks data that may be correlated. In this paper, we propose a variable selection procedure for fixed effects in the cause-specific hazard frailty model for the clustered competing-risks data using a penalized likelihood. Here we consider two popular penalty functions, least absolute shrinkage and selection operator (LASSO) and smoothly clipped absolute deviation (SCAD). We derive simple matrix forms for the variable selection procedure. The usefulness of the proposed method is illustrated using a practical example data set.
      번역하기

      Competing risks data commonly arise when an occurrence of an event precludes other type of events from being observed. Recently, competing-risks models with frailty have been studied for clustered competing-risks data that may be correlated. In this p...

      Competing risks data commonly arise when an occurrence of an event precludes other type of events from being observed. Recently, competing-risks models with frailty have been studied for clustered competing-risks data that may be correlated. In this paper, we propose a variable selection procedure for fixed effects in the cause-specific hazard frailty model for the clustered competing-risks data using a penalized likelihood. Here we consider two popular penalty functions, least absolute shrinkage and selection operator (LASSO) and smoothly clipped absolute deviation (SCAD). We derive simple matrix forms for the variable selection procedure. The usefulness of the proposed method is illustrated using a practical example data set.

      더보기

      참고문헌 (Reference)

      1 Fan J, "Variable selection via nonconcave penalized likelihood and its oracle properties" 96 : 1348-1360, 2001

      2 Ha ID, "Variable selection in subdistribution hazard frailty models with competing risks data" 33 : 4590-4604, 2014

      3 Ha ID, "Variable selection in general frailty models using penalized h-likelihood" 23 : 1044-1060, 2014

      4 Wang H, "Tuning parameter selectors for the smoothly clipped absolute deviation method" 94 : 553-568, 2007

      5 Prentice R, "The analysis of failure times in the presence of competing risks" 34 : 541-554, 1978

      6 Tibshirani R, "Regression shrinkage and selection via the Lasso" 58 : 267-288, 1996

      7 Sylvester R, "Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials" 49 : 466-477, 2006

      8 Ha ID, "Model selection for multi-component frailty models" 26 : 4790-4807, 2007

      9 Yuan M, "Model selection and estimation in regression with grouped variables" 68 : 49-67, 2006

      10 Christian NJ, "Hierarchical likelihood inference on clustered competing risks data" 35 : 251-267, 2016

      1 Fan J, "Variable selection via nonconcave penalized likelihood and its oracle properties" 96 : 1348-1360, 2001

      2 Ha ID, "Variable selection in subdistribution hazard frailty models with competing risks data" 33 : 4590-4604, 2014

      3 Ha ID, "Variable selection in general frailty models using penalized h-likelihood" 23 : 1044-1060, 2014

      4 Wang H, "Tuning parameter selectors for the smoothly clipped absolute deviation method" 94 : 553-568, 2007

      5 Prentice R, "The analysis of failure times in the presence of competing risks" 34 : 541-554, 1978

      6 Tibshirani R, "Regression shrinkage and selection via the Lasso" 58 : 267-288, 1996

      7 Sylvester R, "Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials" 49 : 466-477, 2006

      8 Ha ID, "Model selection for multi-component frailty models" 26 : 4790-4807, 2007

      9 Yuan M, "Model selection and estimation in regression with grouped variables" 68 : 49-67, 2006

      10 Christian NJ, "Hierarchical likelihood inference on clustered competing risks data" 35 : 251-267, 2016

      11 Ha ID, "Hierarchical likelihood approach for frailty models" 88 : 233-243, 2001

      12 Lee Y, "Hierarchical generalized linear models (with discussion)" 58 : 619-678, 1996

      13 Breiman L, "Heuristics of instability and stabilization in model selection" 24 : 2350-2383, 1996

      14 Lee Y, "Generalised linear models with random effects: unified analysis via h-likelihood" Chapman and Hall 2006

      15 Ha ID, "Estimating frailty models via Poisson hierarchical generalized linear models" 12 : 663-681, 2003

      16 Ha ID, "Analysis of clustered competing risks data using subdistribution hazards models with multivariate frailties" 25 : 2488-2505, 2016

      17 Huang J, "A selective review of group selection in high-dimensional models" 27 : 48199-, 2012

      18 Fan J, "A selective overview of variable selection in high dimensional feature space" 20 : 101-148, 2010

      19 Fine JP, "A proportional hazards model for the subdistribution of a competing risk" 94 : 496-509, 1999

      20 Lee Y, "A new sparse variable selection via random-effect model" 125 : 89-99, 2014

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2016-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.09 0.09 0.08
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0 0 0.343 0.1
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼