RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      광류와 표정 HMM에 의한 동영상으로부터의 실시간 얼굴표정 인식 = Realtime Facial Expression Recognition from Video Sequences Using Optical Flow and Expression HMM

      한글로보기

      https://www.riss.kr/link?id=A103035111

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Vision-based Human computer interaction is an emerging field of science and industry to provide natural way to communicate with human and computer. In that sense, inferring the emotional state of the person based on the facial expression recognition is an important issue. In this paper, we present a novel approach to recognize facial expression from a sequence of input images using emotional specific HMM (Hidden Markov Model) and facial motion tracking based on optical flow. Conventionally, in the HMM which consists of basic emotional states, it is considered natural that transitions between emotions are imposed to pass through neutral state. However, in this work we propose an enhanced transition framework model which consists of transitions between each emotional state without passing through neutral state in addition to a traditional transition model. For the localization of facial features from video sequence we exploit template matching and optical flow. The facial feature displacements traced by the optical flow are used for input parameters to HMM for facial expression recognition. From the experiment, we can prove that the proposed framework can effectively recognize the facial expression in real time.
      번역하기

      Vision-based Human computer interaction is an emerging field of science and industry to provide natural way to communicate with human and computer. In that sense, inferring the emotional state of the person based on the facial expression recognition i...

      Vision-based Human computer interaction is an emerging field of science and industry to provide natural way to communicate with human and computer. In that sense, inferring the emotional state of the person based on the facial expression recognition is an important issue. In this paper, we present a novel approach to recognize facial expression from a sequence of input images using emotional specific HMM (Hidden Markov Model) and facial motion tracking based on optical flow. Conventionally, in the HMM which consists of basic emotional states, it is considered natural that transitions between emotions are imposed to pass through neutral state. However, in this work we propose an enhanced transition framework model which consists of transitions between each emotional state without passing through neutral state in addition to a traditional transition model. For the localization of facial features from video sequence we exploit template matching and optical flow. The facial feature displacements traced by the optical flow are used for input parameters to HMM for facial expression recognition. From the experiment, we can prove that the proposed framework can effectively recognize the facial expression in real time.

      더보기

      참고문헌 (Reference)

      1 Y. Zhu, "Using Moment Invariants and HMM in Facial Expression Recognition" 23 : 83-91, 2002

      2 J.L. Barron, "Tutorial: Computing 2D and 3D Optical Flow" 2005

      3 M. Evgeny, "Tracking Facial Features with Occlusions" 7 (7): 1282-1288, 2006

      4 M. Black, "Robust incremental optical flow" Yale University 1992

      5 P. Michel, "Real Time Facial Expression Recognition in Video using Support Vector Machines" 258-264, 2003

      6 Philipp Michel, "Real Time Facial Expression Recognition in Video using Support Vector Machines" 258-264, 2003

      7 A.V. Nefian, "Maximum Likelihood Training of The Embedded HMM for Face Detection and Recognition" 10-13, 2000

      8 Ara V. Nefian, "Hidden Markov Models for Face Recognition" 2721-2724, 1998

      9 I. Cohen, "Facial expression recognition from video sequences: temporal and static modeling" 91 : 160-187, 2003

      10 C.C Chien, "Facial Expression Analysis Under Various Head Poses" 16-18, 2002

      1 Y. Zhu, "Using Moment Invariants and HMM in Facial Expression Recognition" 23 : 83-91, 2002

      2 J.L. Barron, "Tutorial: Computing 2D and 3D Optical Flow" 2005

      3 M. Evgeny, "Tracking Facial Features with Occlusions" 7 (7): 1282-1288, 2006

      4 M. Black, "Robust incremental optical flow" Yale University 1992

      5 P. Michel, "Real Time Facial Expression Recognition in Video using Support Vector Machines" 258-264, 2003

      6 Philipp Michel, "Real Time Facial Expression Recognition in Video using Support Vector Machines" 258-264, 2003

      7 A.V. Nefian, "Maximum Likelihood Training of The Embedded HMM for Face Detection and Recognition" 10-13, 2000

      8 Ara V. Nefian, "Hidden Markov Models for Face Recognition" 2721-2724, 1998

      9 I. Cohen, "Facial expression recognition from video sequences: temporal and static modeling" 91 : 160-187, 2003

      10 C.C Chien, "Facial Expression Analysis Under Various Head Poses" 16-18, 2002

      11 Pardas, "Facial Animation Parameters Extraction and Expression Recognition Using Hidden Markov Models" 17 : 675-688, 2002

      12 P. Ekman, "Facial Action Coding System (FACS)" Consulting Psychologist Press 1978

      13 J. Huang, "Face Recognition with Support Vector Machines and 3D Head Models" 334-341, 2002

      14 B. Fasel, "Automatic Facial Expression Analysis" 36 (36): 259-275, 2003

      15 Y. Zhu, "A Solution for Facial Expression Representation, and Recognition" 17 : 657-673, 2002

      16 J.C Chun, "A Robust 3D Face Pose Estimation and Facial Expression Control for Vision-Based Animation" 4351 : 700-708, 2007

      17 K. Anderson, "A Real-Time Automated System for The Recognition of Human Facial Expressions" 36 (36): 96-105, 2006

      18 K.P. Min, "A Nonparametric Skin Color Model for Face Detection from Color Images" 3320 : 115-119, 2004

      19 Hong-Zhong Huang, "A Comparison Study of Support Vector Machines and Hidden Markov Models in Machinery Condition Monitoring" 대한기계학회 21 (21): 607-615, 2007

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2013-11-05 학술지명변경 외국어명 : Journal of Korean Society for Internet Information -> Journal of Internet Computing and Services KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.55 0.55 0.63
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.64 0.6 0.85 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼