RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Parametric LCP를 이용한 LP해법 = A Study on an algorithm for Parametric LCP

      한글로보기

      https://www.riss.kr/link?id=A1998066

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, approach to solving the LP similiar to Dantzig's self-dual algorithm is described.
      By the transformation of the LP to the Parametric LCP using parameter t, we search the primal and dual feasible path.
      Some properties of algorithm are:
      1) It solves the primal-dual problem at the same time.
      2) It searchs the primal-dual feasible path.
      3) It is the convergent algorithm of parameter t.
      4) Choosing the initial feasible solution can effect the behavior of algorithm.
      5) If the feasible start point is chosen, then the path will be primal-dual beasible throughout the algorithm.
      6) At each step of algorithm, it provides a good bound of optimal objective function.
      In solving the large scale problem by the simplex algorithm, in many cases, 95% of optimality may be achieved.
      In these cases, disappropriate amount of time may be spent in obtaining very eittle improvement.
      There is no way of halting to do this in the simplex algorithm.
      Algorithm described will be appropriate for such problems.
      번역하기

      In this paper, approach to solving the LP similiar to Dantzig's self-dual algorithm is described. By the transformation of the LP to the Parametric LCP using parameter t, we search the primal and dual feasible path. Some properties of algorit...

      In this paper, approach to solving the LP similiar to Dantzig's self-dual algorithm is described.
      By the transformation of the LP to the Parametric LCP using parameter t, we search the primal and dual feasible path.
      Some properties of algorithm are:
      1) It solves the primal-dual problem at the same time.
      2) It searchs the primal-dual feasible path.
      3) It is the convergent algorithm of parameter t.
      4) Choosing the initial feasible solution can effect the behavior of algorithm.
      5) If the feasible start point is chosen, then the path will be primal-dual beasible throughout the algorithm.
      6) At each step of algorithm, it provides a good bound of optimal objective function.
      In solving the large scale problem by the simplex algorithm, in many cases, 95% of optimality may be achieved.
      In these cases, disappropriate amount of time may be spent in obtaining very eittle improvement.
      There is no way of halting to do this in the simplex algorithm.
      Algorithm described will be appropriate for such problems.

      더보기

      목차 (Table of Contents)

      • Ⅰ. 序 論
      • Ⅱ. 선형상보문제의 고찰
      • Ⅲ. 초기해 선택
      • Ⅳ. 알고리즘의 흐름
      • Ⅴ. 알고리즘의 적용
      • Ⅰ. 序 論
      • Ⅱ. 선형상보문제의 고찰
      • Ⅲ. 초기해 선택
      • Ⅳ. 알고리즘의 흐름
      • Ⅴ. 알고리즘의 적용
      • Ⅵ. 結 論
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼