RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      ConvLSTM 학습 기반의 깊이 지도 및 위치 예측 알고리즘 설계 및 성능분석

      한글로보기

      https://www.riss.kr/link?id=A108952002

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, we propose the design and performance analysis of a depth mapping and location prediction algorithm optimized for road driving environments with complex geometric features. The proposed algorithm uses a convolutional recurrent cell (ConvLSTM), which combines Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN), to predict the depth map and location of the next frame from consecutive image frames. By integrating an Autoencoder for encoding spatial information and an RNN for handling temporal continuity, the algorithm can utilize both spatial and temporal information from visual data for more accurate predictions. The performance of the algorithm was validated using the KITTI vision Benchmark dataset, and the results confirmed that our approach is more efficient than location estimation methods based on complex sensors. These findings indicate that the proposed algorithm can significantly improve performance in understanding the complex spatial structure of road driving environments and estimating location.
      번역하기

      In this paper, we propose the design and performance analysis of a depth mapping and location prediction algorithm optimized for road driving environments with complex geometric features. The proposed algorithm uses a convolutional recurrent cell (Con...

      In this paper, we propose the design and performance analysis of a depth mapping and location prediction algorithm optimized for road driving environments with complex geometric features. The proposed algorithm uses a convolutional recurrent cell (ConvLSTM), which combines Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN), to predict the depth map and location of the next frame from consecutive image frames. By integrating an Autoencoder for encoding spatial information and an RNN for handling temporal continuity, the algorithm can utilize both spatial and temporal information from visual data for more accurate predictions. The performance of the algorithm was validated using the KITTI vision Benchmark dataset, and the results confirmed that our approach is more efficient than location estimation methods based on complex sensors. These findings indicate that the proposed algorithm can significantly improve performance in understanding the complex spatial structure of road driving environments and estimating location.

      더보기

      목차 (Table of Contents)

      • Abstract
      • I. 서론
      • II. 순환 신경망 학습 기반 깊이 지도 및 위치 예측 알고리즘
      • III. KITTI 벤치 마크 데이터를 이용한성능 분석
      • IV. 결론 및 향후 연구방향
      • Abstract
      • I. 서론
      • II. 순환 신경망 학습 기반 깊이 지도 및 위치 예측 알고리즘
      • III. KITTI 벤치 마크 데이터를 이용한성능 분석
      • IV. 결론 및 향후 연구방향
      • 참고문헌
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼