RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      VDCluster : 대용량 비디오 시퀀스를 위한 비디오 세그멘테이션 및 클러스터링 알고리즘 = VDCluster : A Video Segmentation and Clustering Algorithm for Large Video Sequences

      한글로보기

      https://www.riss.kr/link?id=A82293064

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 논문에서는 비디오 저장이나 검색과 같은 비디오 정보 처리를 위한 중요한 기초 연구로써 비디오의 표현을 위한 효과적인 기법을 제안한다. 비디오 데이타 세트는 수초에서 수분 사이의 상연 시간을 갖는 비디오 클립들의 집합이며, 각 비디오 클립은 연속된 비디오 프레임들로 구성되어 있다. 이 비디오 클립은 다차원 데이타 시퀀스(multidimensional data sequence: MDS)로 표현될 수 있으며, 프레임 사이의 시간적인 정보를 고려하여 비디오 세그먼트로 나누어 지고, 한 클립 내에서 서로 유사한 세그먼트들은 다시 비디오 클러스터로 군집화된다. 따라서, 각 비디오 클립은 소수 개의 비디오 클러스터로 표현되어 진다. 본 논문에서 제안한 비디오 세그멘테이션 및 클러스터링 알고리즘 VDCLuster는 사전에 정의된 일정 수준의 클러스터링 품질을 보장하고 있으며, 다양한 비디오 시퀀스에 대한 실험을 통하여 알고리즘의 효과를 입증한다.
      번역하기

      본 논문에서는 비디오 저장이나 검색과 같은 비디오 정보 처리를 위한 중요한 기초 연구로써 비디오의 표현을 위한 효과적인 기법을 제안한다. 비디오 데이타 세트는 수초에서 수분 사이의 ...

      본 논문에서는 비디오 저장이나 검색과 같은 비디오 정보 처리를 위한 중요한 기초 연구로써 비디오의 표현을 위한 효과적인 기법을 제안한다. 비디오 데이타 세트는 수초에서 수분 사이의 상연 시간을 갖는 비디오 클립들의 집합이며, 각 비디오 클립은 연속된 비디오 프레임들로 구성되어 있다. 이 비디오 클립은 다차원 데이타 시퀀스(multidimensional data sequence: MDS)로 표현될 수 있으며, 프레임 사이의 시간적인 정보를 고려하여 비디오 세그먼트로 나누어 지고, 한 클립 내에서 서로 유사한 세그먼트들은 다시 비디오 클러스터로 군집화된다. 따라서, 각 비디오 클립은 소수 개의 비디오 클러스터로 표현되어 진다. 본 논문에서 제안한 비디오 세그멘테이션 및 클러스터링 알고리즘 VDCLuster는 사전에 정의된 일정 수준의 클러스터링 품질을 보장하고 있으며, 다양한 비디오 시퀀스에 대한 실험을 통하여 알고리즘의 효과를 입증한다.

      더보기

      다국어 초록 (Multilingual Abstract)

      In this paper, we investigate video representation techniques that are the foundational work for the subsequent video processing such as video storage and retrieval. A video data set is a collection of video clips, each of which is a sequence of video frames and is represented by a multidimensional data sequence (MDS). An MDS is partitioned into video segments considering temporal relationship among frames, and then similar segments of the clip are grouped into video clusters. Thus, the video clip is represented by a small number of video clusters. The video segmentation and clustering algorithm, VDCluster, proposed in this paper guarantee clustering quality to such an extent that satisfies predefined conditions. The experiments show that our algorithm performs very effectively with respect to various video data sets.
      번역하기

      In this paper, we investigate video representation techniques that are the foundational work for the subsequent video processing such as video storage and retrieval. A video data set is a collection of video clips, each of which is a sequence of video...

      In this paper, we investigate video representation techniques that are the foundational work for the subsequent video processing such as video storage and retrieval. A video data set is a collection of video clips, each of which is a sequence of video frames and is represented by a multidimensional data sequence (MDS). An MDS is partitioned into video segments considering temporal relationship among frames, and then similar segments of the clip are grouped into video clusters. Thus, the video clip is represented by a small number of video clusters. The video segmentation and clustering algorithm, VDCluster, proposed in this paper guarantee clustering quality to such an extent that satisfies predefined conditions. The experiments show that our algorithm performs very effectively with respect to various video data sets.

      더보기

      목차 (Table of Contents)

      • 요약
      • Abstract
      • 1. 서론
      • 2. 관련 연구
      • 3. 클러스터링 특성
      • 요약
      • Abstract
      • 1. 서론
      • 2. 관련 연구
      • 3. 클러스터링 특성
      • 4. 비디오 세그멘테이션
      • 5. 비디오 클러스터링
      • 6. 실험
      • 7. 결론
      • 참고문헌
      • 저자소개
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2014-09-01 평가 학술지 통합(기타)
      2013-04-26 학술지명변경 한글명 : 정보과학회논문지 : 데이타베이스</br>외국어명 : Journal of KIISE : Databases KCI등재
      2011-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정(등재후보2차) KCI등재
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼