RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      Computational Studies on the Reaction from Silyl 1,4-Dilithio 1,3-butadiene to Lithio Silole

      한글로보기

      https://www.riss.kr/link?id=A103568550

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The reaction mechanisms forming lithio silole, 2, from silyl 1,4-dilithio 1,3-butadiene, 1, were examined theoretically at the CCSD/6-31+G(d)//B3LYP/6-31+G(d) level of theory in the gas phase. To account for the solvent effects, the reactions in diethyl ether were examined using the polarizable continuum model of the integral equation formalism (IEFPCM) with the united atom topological (UA0) cavity model at the IEFPCM-CCSD/6-31+G(d)//IEFPCM-B3LYP/6-31+G(d) level of theory. Without hexamethyl-phosphoramide (HMPA) as a cosolvent, the lithio silole, 2, was not produced due to the higher activation barrier, which is comparable to the homolytic cleavage of CC and/or CS bonds. On the other hand, the reaction could be feasible if HMPA solvates strongly or dissociates two Li+ cations from the reaction system. This suggests that HMPA plays a decisive role in the reaction. The optimized structures of the stationary point species on the potential energy surfaces in diethyl ether were similar to those in the gas phase, suggesting that the solvent effects on the structures of stationary species were not so large. On the other hand, theΔ E ZPVE ≠ values in diethyl ether showed larger changes from the corresponding values in the gas phase.
      번역하기

      The reaction mechanisms forming lithio silole, 2, from silyl 1,4-dilithio 1,3-butadiene, 1, were examined theoretically at the CCSD/6-31+G(d)//B3LYP/6-31+G(d) level of theory in the gas phase. To account for the solvent effects, the reactions in dieth...

      The reaction mechanisms forming lithio silole, 2, from silyl 1,4-dilithio 1,3-butadiene, 1, were examined theoretically at the CCSD/6-31+G(d)//B3LYP/6-31+G(d) level of theory in the gas phase. To account for the solvent effects, the reactions in diethyl ether were examined using the polarizable continuum model of the integral equation formalism (IEFPCM) with the united atom topological (UA0) cavity model at the IEFPCM-CCSD/6-31+G(d)//IEFPCM-B3LYP/6-31+G(d) level of theory. Without hexamethyl-phosphoramide (HMPA) as a cosolvent, the lithio silole, 2, was not produced due to the higher activation barrier, which is comparable to the homolytic cleavage of CC and/or CS bonds. On the other hand, the reaction could be feasible if HMPA solvates strongly or dissociates two Li+ cations from the reaction system. This suggests that HMPA plays a decisive role in the reaction. The optimized structures of the stationary point species on the potential energy surfaces in diethyl ether were similar to those in the gas phase, suggesting that the solvent effects on the structures of stationary species were not so large. On the other hand, theΔ E ZPVE ≠ values in diethyl ether showed larger changes from the corresponding values in the gas phase.

      더보기

      참고문헌 (Reference)

      1 V. N. Vandyshev, 169 : 57-, 1990

      2 J. Tomasi, 464 : 211-, 1999

      3 F. Birkeneder, 583 : 152-, 1990

      4 J. Rannou, 324-, 1989

      5 M. Castagnolo, 79 : 2211-, 1983

      6 W. R. Gilkerson, 101 : 4096-, 1979

      7 P. Goralski, 86 : 3103-, 1990

      8 B. Mennucci, 101 : 10506-, 1997

      9 B. Mennucci, 106 : 5151-, 1997

      10 M. T. Cancès, 107 : 3032-, 1997

      1 V. N. Vandyshev, 169 : 57-, 1990

      2 J. Tomasi, 464 : 211-, 1999

      3 F. Birkeneder, 583 : 152-, 1990

      4 J. Rannou, 324-, 1989

      5 M. Castagnolo, 79 : 2211-, 1983

      6 W. R. Gilkerson, 101 : 4096-, 1979

      7 P. Goralski, 86 : 3103-, 1990

      8 B. Mennucci, 101 : 10506-, 1997

      9 B. Mennucci, 106 : 5151-, 1997

      10 M. T. Cancès, 107 : 3032-, 1997

      11 S. Al-Rusaese, 110 : 8676-, 2006

      12 M. A. Beswick, 18 : 1148-, 1999

      13 M. Cossi, 255 : 327-, 1996

      14 A. J. Kos, 102 : 7928-, 1980

      15 A. J. Ashe III., 10 : 2424-, 1991

      16 U. Schubert, 1184-, 1982

      17 W. Bauer, 110 : 6033-, 1988

      18 A. J. Ashe III., 12 : 3350-, 1993

      19 L. Liu, 29 : 278-, 2010

      20 F. Pauer, 474 : 27-, 1994

      21 M. Saito, 46 : 1504-, 2007

      22 E. Negishi, 108 : 3402-, 1986

      23 E. H. Braye, 1250-, 1959

      24 J. Dubac, 90 : 215-, 1990

      25 E. Colomer, 90 : 265-, 1990

      26 D. H. O’Brien, 103 : 3237-, 1981

      27 E. G. Janzen, 10 : 6-, 1967

      28 S. Yamaguchi, 69 : 2327-, 1996

      29 K. Tamao, 68 : 139-, 1996

      30 K. Tamao, 118 : 11947-, 1996

      31 S. Yamaguchi, 78 : 721-, 2006

      32 S. Yamaguchi, 63 : 1115-, 2005

      33 S. Yamaguchi, 653 : 223-, 2002

      34 S. Yamaguchi, 6 : 1683-, 2000

      35 S. Yamaguchi, 121 : 10420-, 1999

      36 S. Yamaguchi, 3693-, 1998

      37 K. Tamao, 116 : 11715-, 1994

      38 C. Wang, 129 : 3094-, 2007

      39 M. Murakami, 78 : 415-, 2006

      40 G. Zweifel, 46 : 1292-, 1981

      41 R. Knorr, 23 : 366-, 1984

      42 F. Sato, 1126-, 1982

      43 E. Negishi, 105 : 6761-, 1983

      44 G. A. Molander, 48 : 5409-, 1983

      45 J. A. Miller, 24 : 76-, 1984

      46 T. Yoshida, 103 : 1276-, 1981

      47 P. von Ragué Schleyer, 56 : 151-, 1984

      48 E. Negishi, 105 : 6344-, 1983

      49 L. D. Boardman, 106 : 6105-, 1984

      50 Z. Wang, 46 : 499-, 2005

      51 P. F. Hudrlik, 691 : 1257-, 2006

      52 T. L. Cottrell, "The Strengths of Chemical Bonds" Butterworths Scientific Publications 1958

      53 M. J. Frisch, "Gaussian 03, Revision C.02"

      54 J. L. Wardell, "Comprehensive Organometallic Chemistry, Vol. 1" Pergamon 1982

      55 J. March, "Advanced Organic Chemistry" John Wiley &Sons 77-, 1985

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2008-01-01 평가 SCI 등재 (기타) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.58 0.11 0.38
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.28 0.23 0.213 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼