The initial strain, the applied stress exponent, the activation energy, and rupture time in AZ31 magnesium alloy have been measured in order to predict the deformation mechanism and rupture life of creep over the temperature range of 423-443K. Creep t...
The initial strain, the applied stress exponent, the activation energy, and rupture time in AZ31 magnesium alloy have been measured in order to predict the deformation mechanism and rupture life of creep over the temperature range of 423-443K. Creep tests were carried out under constant applied stress and temperature, and the lever type tester and automatic temperature controller was used for it, respectively. The experimental results showed that the applied stress exponent was about 9.74, and the activation energy for creep, 113.6KJ/mol was less than that of the self diffusion of Mg alloy including aluminum. From the results, the mechanism for creep deformation seems to be controlled by cross slip at the temperature range of 423-443K. Also the higher the applied stress and temperature, the higher the initial strain. And the rupture time for creep decreased as quadratic function with increasing the initial strain in double logarithmic axis.