아마존 등과 같은 전자상거래 업체부터 유튜브, 애플 뮤직 등 콘텐츠 포털까지 추천 시스템을 통해 사용자 맞춤 상품과 콘텐츠를 제공해 주고 있다. 고전적인 협업 필터링 추천은 사용자와 ...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A106467234
2019
-
560
학술저널
237-239(3쪽)
0
상세조회0
다운로드국문 초록 (Abstract)
아마존 등과 같은 전자상거래 업체부터 유튜브, 애플 뮤직 등 콘텐츠 포털까지 추천 시스템을 통해 사용자 맞춤 상품과 콘텐츠를 제공해 주고 있다. 고전적인 협업 필터링 추천은 사용자와 ...
아마존 등과 같은 전자상거래 업체부터 유튜브, 애플 뮤직 등 콘텐츠 포털까지 추천 시스템을 통해 사용자 맞춤 상품과 콘텐츠를 제공해 주고 있다. 고전적인 협업 필터링 추천은 사용자와 아이템, 그리고 선호도로 이루어진 3차원 데이터를 이용하는데 일반적으로 데이터 희소성(Sparsity)문제가 발생한다. 이 문제를 해결하기 위해 사용자와 아이템 평점 매트릭스 속에 숨어 있는 잠재요인을 추출하여 예측하여 사용자에게 추천하는 기법을 사용한다. 본 논문에서는 사용자가 아이템에 평가한 선호도에 대한 잠재요인으로 간주하며 그 외정확한 유사도 측정을 위하여 최근 사용자가 동영상을 플레이한 콘텐츠에 대하여 점수를 부여 및 클릭수를 비교 분석하여 가장 적합한 추천 모델을 제시한다.
목차 (Table of Contents)
투자형 크라우드 펀딩에서 참여자 활동성의 매개효과 분석
GitHub 협업(Pull Request) 활동에 따른 소스 코드 품질 예측 모델