RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      융선 추적을 이용한 세선화 보정 및 의사 특징점 제거 = Thinning Compensation and Pseudo Minutiae Removal Using Ridge Trace

      한글로보기

      https://www.riss.kr/link?id=A101434661

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      이 논문에서는 음선 추적을 이용한 세선화 보정 및 의사 특징 점 제거에 관하여 연구하였다. 세선화 보정 과정은 첫째로, 교차수가 6인 픽셀 중에서 8-이웃 연결합이 3이 아닌 경우 불필요한 픽셀을 삭제하고 둘째로, 교차수가 6인 픽셀의 주위 8픽셀 중에서 융선에 해당하는 픽셀과 교파수가 2인 픽셀을 시작 픽셀로 하여 융선을 추적하면서 제거할 픽셀이 없을 때까지 반복하여 처리한다. 세선화 보정이 끝나면 교차 수와 8-이웃 연결합을 이용하여 후보 특징 점을 추출하였다. 추출된 후보 특징 점 중에서 의사 특징 점 제거 알고리즘을 이용하여 실제 특징 점을 재 추출하였다. 제안 방법의 성능 평가를 위하여 기존 방법과 비교하였으며, 실험결과 제안방법이 세선화정도가 우수하고 많은 의사 특징 점들이 제거되었음을 알 수 있었다.
      번역하기

      이 논문에서는 음선 추적을 이용한 세선화 보정 및 의사 특징 점 제거에 관하여 연구하였다. 세선화 보정 과정은 첫째로, 교차수가 6인 픽셀 중에서 8-이웃 연결합이 3이 아닌 경우 불필요한 ...

      이 논문에서는 음선 추적을 이용한 세선화 보정 및 의사 특징 점 제거에 관하여 연구하였다. 세선화 보정 과정은 첫째로, 교차수가 6인 픽셀 중에서 8-이웃 연결합이 3이 아닌 경우 불필요한 픽셀을 삭제하고 둘째로, 교차수가 6인 픽셀의 주위 8픽셀 중에서 융선에 해당하는 픽셀과 교파수가 2인 픽셀을 시작 픽셀로 하여 융선을 추적하면서 제거할 픽셀이 없을 때까지 반복하여 처리한다. 세선화 보정이 끝나면 교차 수와 8-이웃 연결합을 이용하여 후보 특징 점을 추출하였다. 추출된 후보 특징 점 중에서 의사 특징 점 제거 알고리즘을 이용하여 실제 특징 점을 재 추출하였다. 제안 방법의 성능 평가를 위하여 기존 방법과 비교하였으며, 실험결과 제안방법이 세선화정도가 우수하고 많은 의사 특징 점들이 제거되었음을 알 수 있었다.

      더보기

      다국어 초록 (Multilingual Abstract)

      This thesis studies about thinning compensation and the removal of pseudo minutiae using ridge trace. As for the process of thinning compensation, first, it removes unnecessary pixel when 8-neighbor connection sum among the pixels with the crossing count number 6 is not 3. Second, it deals with repeatedly until there is no pixel to remove while tracing the ridge, beginning with the pixel equivalent to the ridge and the pixel with the crossing count number 2 among the 8 pixels around the pixels with the crossing count number 6. When the thinning compensation is finished, it extracts substitute minutiae to use the crossing count number and the 8-neighbor connection sum. Among the extracted substitute minutiaes, it extracts the real minutiae to utilize the pseudo minutiae removal algorithm again. It compares with the existing method for the performance evaluation of proposal method. By the experimental results, The proposal method indicated that a degree of thinning is excellent and a lot of minutiaes were removed.
      번역하기

      This thesis studies about thinning compensation and the removal of pseudo minutiae using ridge trace. As for the process of thinning compensation, first, it removes unnecessary pixel when 8-neighbor connection sum among the pixels with the crossing co...

      This thesis studies about thinning compensation and the removal of pseudo minutiae using ridge trace. As for the process of thinning compensation, first, it removes unnecessary pixel when 8-neighbor connection sum among the pixels with the crossing count number 6 is not 3. Second, it deals with repeatedly until there is no pixel to remove while tracing the ridge, beginning with the pixel equivalent to the ridge and the pixel with the crossing count number 2 among the 8 pixels around the pixels with the crossing count number 6. When the thinning compensation is finished, it extracts substitute minutiae to use the crossing count number and the 8-neighbor connection sum. Among the extracted substitute minutiaes, it extracts the real minutiae to utilize the pseudo minutiae removal algorithm again. It compares with the existing method for the performance evaluation of proposal method. By the experimental results, The proposal method indicated that a degree of thinning is excellent and a lot of minutiaes were removed.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼