RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      심장 질환 진단을 위한 베이지안 분류 기법 = Bayesian Classification Method for Diagnosing Heart Disease

      한글로보기

      https://www.riss.kr/link?id=A107344355

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      심전도는 각종심장질환 들을 예측하는데 널리 사용되고 있다. 이러한 심전도에서 ST-분절은 허혈성심장 질환, 확장성 심근성, 비후성 심근증 등을 예측하는데 이용되고 있다.이 논문에서는 환자들의 임상 정보와 심전도로부터 심장 질환 예측을 위한 중요 파라미터인 ST-분절을 추출하였다. 그리고 이러한 추출된 데이터 분석을 위해서 데이터마이닝 기법을 적용한다. 데이터마이닝의 분류 알고리즘인 베이지안 네트워크를 적용 심장 질환을 효율적으로 분류하기 위한 방법을 제시 하였다.
      번역하기

      심전도는 각종심장질환 들을 예측하는데 널리 사용되고 있다. 이러한 심전도에서 ST-분절은 허혈성심장 질환, 확장성 심근성, 비후성 심근증 등을 예측하는데 이용되고 있다.이 논문에서는 ...

      심전도는 각종심장질환 들을 예측하는데 널리 사용되고 있다. 이러한 심전도에서 ST-분절은 허혈성심장 질환, 확장성 심근성, 비후성 심근증 등을 예측하는데 이용되고 있다.이 논문에서는 환자들의 임상 정보와 심전도로부터 심장 질환 예측을 위한 중요 파라미터인 ST-분절을 추출하였다. 그리고 이러한 추출된 데이터 분석을 위해서 데이터마이닝 기법을 적용한다. 데이터마이닝의 분류 알고리즘인 베이지안 네트워크를 적용 심장 질환을 효율적으로 분류하기 위한 방법을 제시 하였다.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼