RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Nanostructuring Methods for Enhancing Light Absorption Rate of Si-Based Photovoltaic Devices: A Review

      한글로보기

      https://www.riss.kr/link?id=A103722863

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In recent years, there has been growing consideration of renewable energy especially photovoltaic devices. A silicon (Si) based solar cell is the most popularly and frequently considered among the photovoltaic devices, but its bulk thickness issue lowers the performance and hinders widespread application due to the material cost. Also, this thick nature causes difference in length between minority carrier diffusion and sufficient light absorption. To mitigate the issues there have been many recent studies on Si photovoltaic devices adopting nanostructuring strategies to enhance the performance. Therefore, we report two different approaches on recent nanostructuring techniques for photovoltaic devices; bottom-up and top-down processes, which are composed of vapor-liquid-solid, solution-liquid-solid, reactive ion etching with Langmuir Blodgett and metal assisted chemical etching. Those fabrication processes enable the fabrication of nanostructures with a highly ordered and alignment structures leading to enhance the light absorption and have an appropriate thickness of Si substrate regressing Auger recombination. The fabricated nanowire and nanocone array structures outperform existing results with light absorption exceeding 90%.
      번역하기

      In recent years, there has been growing consideration of renewable energy especially photovoltaic devices. A silicon (Si) based solar cell is the most popularly and frequently considered among the photovoltaic devices, but its bulk thickness issue low...

      In recent years, there has been growing consideration of renewable energy especially photovoltaic devices. A silicon (Si) based solar cell is the most popularly and frequently considered among the photovoltaic devices, but its bulk thickness issue lowers the performance and hinders widespread application due to the material cost. Also, this thick nature causes difference in length between minority carrier diffusion and sufficient light absorption. To mitigate the issues there have been many recent studies on Si photovoltaic devices adopting nanostructuring strategies to enhance the performance. Therefore, we report two different approaches on recent nanostructuring techniques for photovoltaic devices; bottom-up and top-down processes, which are composed of vapor-liquid-solid, solution-liquid-solid, reactive ion etching with Langmuir Blodgett and metal assisted chemical etching. Those fabrication processes enable the fabrication of nanostructures with a highly ordered and alignment structures leading to enhance the light absorption and have an appropriate thickness of Si substrate regressing Auger recombination. The fabricated nanowire and nanocone array structures outperform existing results with light absorption exceeding 90%.

      더보기

      참고문헌 (Reference)

      1 Hsu, C. M, "Wafer-Scale Silicon Nanopillars and Nanocones by Langmuir-Blodgett Assembly and Etching" 93 (93): 3109-, 2008

      2 Wagner, R. S, "Vapor-Liquid-Solid Mechanism of Single Crystal Growth" 4 : 89-90, 1964

      3 Lew, K. K, "Vapor-Liquid-Solid Growth of Silicon-Germanium Nanowires" 15 (15): 2073-2076, 2003

      4 김태욱, "Ultra-short laser patterning of thin-film CIGS solar cells through glass substrate" 한국정밀공학회 14 (14): 1287-1292, 2013

      5 Najar, A, "Ultra-Low Reflection Porous Silicon Nanowires for Solar Cell Applications" 20 (20): 16861-16870, 2012

      6 Zhou, G. W, "Transmission Electron Microscopy Study of Si Nanowires" 73 (73): 677-679, 1998

      7 Chopra, K. L, "Thin-Film Solar Cells : an Overview" 12 (12): 69-92, 2004

      8 Shah, A. V, "Thin-Film Silicon Solar Cells : A Review and Selected Trends" 38 (38): 501-520, 1995

      9 Winters, H. F, "The Role of Chemisorption in Plasma Etching" 49 (49): 5165-5170, 1978

      10 Pan, Z. W, "Temperature-Controlled Growth of Silicon-Based Nanostructures by Thermal Evaporation of SiO Powders" 105 (105): 2507-2514, 2001

      1 Hsu, C. M, "Wafer-Scale Silicon Nanopillars and Nanocones by Langmuir-Blodgett Assembly and Etching" 93 (93): 3109-, 2008

      2 Wagner, R. S, "Vapor-Liquid-Solid Mechanism of Single Crystal Growth" 4 : 89-90, 1964

      3 Lew, K. K, "Vapor-Liquid-Solid Growth of Silicon-Germanium Nanowires" 15 (15): 2073-2076, 2003

      4 김태욱, "Ultra-short laser patterning of thin-film CIGS solar cells through glass substrate" 한국정밀공학회 14 (14): 1287-1292, 2013

      5 Najar, A, "Ultra-Low Reflection Porous Silicon Nanowires for Solar Cell Applications" 20 (20): 16861-16870, 2012

      6 Zhou, G. W, "Transmission Electron Microscopy Study of Si Nanowires" 73 (73): 677-679, 1998

      7 Chopra, K. L, "Thin-Film Solar Cells : an Overview" 12 (12): 69-92, 2004

      8 Shah, A. V, "Thin-Film Silicon Solar Cells : A Review and Selected Trends" 38 (38): 501-520, 1995

      9 Winters, H. F, "The Role of Chemisorption in Plasma Etching" 49 (49): 5165-5170, 1978

      10 Pan, Z. W, "Temperature-Controlled Growth of Silicon-Based Nanostructures by Thermal Evaporation of SiO Powders" 105 (105): 2507-2514, 2001

      11 Müller, J, "TCO and Light Trapping in Silicon Thin Film Solar Cells" 77 (77): 917-930, 2004

      12 Wagner, R. S, "Study of the Filamentary Growth of Silicon Crystals from the Vapor" 35 (35): 2993-3000, 1964

      13 Trentler, T. J, "Solution-Liquid-SolidGrowth of Crystalline Ill-V Semiconductors : An Analogy to Vapor-Liquid-Solid Growth" 270 (270): 1791-1794, 1995

      14 Zhang, Y. F, "Silicon Nanowires Prepared by Laser Ablation at High Temperature" 72 (72): 1835-1837, 1998

      15 Schmidt, V, "Silicon Nanowires : a Review on Aspects of their Growth and their Electrical Properties" 21 (21): 2681-2702, 2009

      16 Stelzner, T, "Silicon Nanowire-Based Solar Cells" 19 (19): 295203-, 2008

      17 He, R, "Si Nanowire Bridges in Microtrenches : Integration of Growth into Device Fabrication" 17 (17): 2098-2102, 2005

      18 Li, J, "Si Nanopillar Array Optimization on Si Thin Films for Solar Energy Harvesting" 95 (95): 3102-, 2009

      19 Kempa, T. J, "Semiconductor Nanowires : A Platform for Exploring Limits and Concepts for Nano-Enabled Solar Cells" 6 (6): 719-733, 2013

      20 Wu, Y, "Semiconductor Nanowire Array : Potential Substrates for Photocatalysis and Photovoltaics" 19 (19): 197-202, 2002

      21 김민생, "Room Temperature Deposition of TiO2 Using Nano Particle Deposition System (NPDS): Application to Dye-Sensitized Solar Cell (DSSC)" 한국정밀공학회 12 (12): 749-752, 2011

      22 Eisenhawer, B, "Radial Heteroemitter Solar Cells Based on VLS Grown Silicon Nanowires" 210 (210): 695-700, 2013

      23 Greiner, E. S, "Preparation of Silicon Ribbons" 32 (32): 2489-2490, 1961

      24 Zhang. M. L, "Preparation of Lagre-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching" 112 (112): 4444-4450, 2008

      25 Sandulova, A. V, "Preparation and Some Properties of Whisker and Needle-Shaped Single Crystals of Germanium, Silicon and Their Solid Solutions" 5 : 1883-, 1964

      26 Catalano, A, "Polycrystalline Thin-Film Technologies : Status and Prospects" 41-42 : 205-217, 1996

      27 Yung Kuo, C, "Photovoltaic Characteristics of Silicon Nanowire Arrays Synthesized by Vapor-Liquid-Solid Process" 95 (95): 154-157, 2011

      28 Peng, K, "Ordered Silicon Nanowire Arrays via Nanosphere Lithography and Metal-Induced Etching" 90 (90): 163123-3-, 2007

      29 Han, S. E, "Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics" 10 (10): 1012-1015, 2010

      30 Zhu, J, "Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays" 9 (9): 279-282, 2009

      31 Xia, Y, "One-Dimensional Nanostructures : Synthesis, Characterization, and Applications" 15 (15): 353-389, 2003

      32 Tsakalakos, L, "Nanostructures for Photovoltaics" 62 (62): 175-189, 2008

      33 Chartier, C, "Metal-assisted Chemical Etching of Silicon in HF–H2O2" 53 (53): 5509-5516, 2008

      34 Huang, Z, "Metal-Assisted Chemical Etching of Silicon : A Review" 23 (23): 285-308, 2011

      35 Li, X, "Metal-Assisted Chemical Etching in HF/H2O2 Produces Porous Silicon" 77 (77): 2572-2574, 2000

      36 Li, X, "Metal Assisted Chemical Etching for High Aspect Ratio Nanostructures : A Review of Characteristics and Applications in Photovoltaics" 16 (16): 71-81, 2012

      37 Becquerel, E, "La lumi_ere : Ses Causes et Ses E_ets" 122-, 1867

      38 Zhu, J, "Hyperbranched Lead Selenide Nanowire Networks" 7 (7): 1095-1099, 2007

      39 Lu, Y, "High-Efficiency Ordered Silicon Nano-Conical-Frustum Array Solar Cells by Self-Powered Parallel Electron Lithography" 10 (10): 4651-4656, 2010

      40 Misra, S, "High Efficiency and Stable Hydrogenated Amorphous Silicon Radial Junction Solar Cells Built on VLS-Grown Silicon Nanowires" 118 : 90-95, 2013

      41 Gudiksen, M. S, "Growth of Nanowire Superlattice Structures for Nanoscale Photonics and Electronics" 415 (415): 617-620, 2002

      42 지상훈, "Graphite Foil Based Assembled Bipolar Plates for Polymer Electrolyte Fuel Cells" 한국정밀공학회 13 (13): 2183-2186, 2012

      43 Duan, X, "General Synthesis of Compound Semiconductor Nanowires" 12 (12): 298-302, 2000

      44 Perraud, S, "Full Process for Integrating Silicon Nanowire Arrays into Solar Cells" 93 (93): 1568-1571, 2009

      45 Werner, J. H, "Festkörperprobleme 34" Springer 115-146, 1994

      46 Huang, Z, "Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density" 19 (19): 744-748, 2007

      47 Seeger, K, "Fabrication of Ordered Arrays of Silicon Nanopillars" 32 (32): 129-132, 1999

      48 Mårtensson, T, "Fabrication of Individually Seeded Nanowire Arrays by Vapour-Liquid-Solid Growth" 14 (14): 1255-1258, 2003

      49 Huang, Z, "Extended Arrays of Vertically Aligned Sub-10 nm Diameter Si Nanowires by Metal-AssistedChemical Etching" 8 (8): 3046-3051, 2008

      50 Lauhon, L. J, "Epitaxial Core-Shell and Core-Multishell Nanowire Heterostructures" 420 (420): 57-61, 2002

      51 Herzinger, C. M, "Ellipsometric Determination of Optical Constants for Silicon and Thermally Grown Silicon Dioxide via a Multi-Sample, Multi-Wavelength, Multi-Angle Investigation" 83 (83): 3323-3336, 1998

      52 Huang, Y, "Directed Assembly of One-Dimensional Nanostructures into Functional Networks" 291 (291): 630-633, 2001

      53 Cui, Y, "Diameter-Controlled Synthesis of Single-Crystal Silicon Nanowires" 78 (78): 2214-2216, 2001

      54 Shockley, W, "Detailed Balance Limit of Efficiency of p-n Junction Solar Cells" 32 (32): 510-519, 1961

      55 Lee, J. H, "Cutting Edge Nanotechnology" InTech 2010

      56 Holmes, J. D, "Control of Thickness and Orientation of Solution-Grown Silicon Nanowires" 287 (287): 1471-1473, 2000

      57 Kayes, B. M, "Comparison of the Device Physics Principles of Planar and Radial P-N Junction Nanorod Solar Cells" 97 (97): 4302-11-, 2005

      58 Gunawan, O, "Characteristics of Vapor-Liquid-Solid Grown Silicon Nanowire Solar Cells" 93 (93): 1388-1393, 2009

      59 Yu, L, "Assessing Individual Radial Junction Solar Cells over Millions on VLS-Grown Silicon Nanowires" 24 (24): 275401-, 2013

      60 Lo, T. C, "Anisotropic Etching of Deep Trench for Silicon Monolithic Microwave Integrated Circuit" 29 (29): 2202-2203, 1993

      61 Hu, L, "Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications" 7 (7): 3249-3252, 2007

      62 장익황, "Air-breathing Flexible Polydimethylsiloxane (PDMS)-based Fuel Cell" 한국정밀공학회 14 (14): 501-504, 2013

      63 Chapin, D. M, "A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power" 25 (25): 676-677, 1954

      64 Okano, T, "A New Multi-Electrode Evaporator for Refractory Metals and Its Application to Getter Pumps" 20 : 213-219, 1981

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2015-04-01 평가 SCIE 등재 (기타) KCI등재
      2008-06-23 학회명변경 영문명 : Korean Society Of Precision Engineering -> Korean Society for Precision Engineering
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 3.62 2.24 0
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0 0 0 0.21
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼