RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      지능형 교육 시스템의 학습자 분류를 위한 Var iational Auto-Encoder 기반 준지도학습 기법 = Variational Auto-Encoder Based Semi-supervised Learning Scheme for Learner Classification in Intelligent Tutoring System

      한글로보기

      https://www.riss.kr/link?id=A106443410

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Intelligent tutoring system enables users to effectively learn by utilizing various artificial intelligence techniques. For instance, it can recommend a proper curriculum or learning method to individual users based on their learning history. To do this effectively, user’s characteristics need to be analyzed and classified based on various aspects such as interest, learning ability, and personality. Even though data labeled by the characteristics are required for more accurate classification, it is not easy to acquire enough amount of labeled data due to the labeling cost. On the other hand, unlabeled data should not need labeling process to make a large number of unlabeled data be collected and utilized. In this paper, we propose a semi-supervised learning method based on feedback variational auto-encoder(FVAE), which uses both labeled data and unlabeled data. FVAE is a variation of variational auto-encoder(VAE), where a multi-layer perceptron is added for giving feedback. Using unlabeled data, we train FVAE and fetch the encoder of FVAE. And then, we extract features from labeled data by using the encoder and train classifiers with the extracted features. In the experiments, we proved that FVAE-based semi-supervised learning was superior to VAE-based method in terms with accuracy and F1 score.
      번역하기

      Intelligent tutoring system enables users to effectively learn by utilizing various artificial intelligence techniques. For instance, it can recommend a proper curriculum or learning method to individual users based on their learning history. To do th...

      Intelligent tutoring system enables users to effectively learn by utilizing various artificial intelligence techniques. For instance, it can recommend a proper curriculum or learning method to individual users based on their learning history. To do this effectively, user’s characteristics need to be analyzed and classified based on various aspects such as interest, learning ability, and personality. Even though data labeled by the characteristics are required for more accurate classification, it is not easy to acquire enough amount of labeled data due to the labeling cost. On the other hand, unlabeled data should not need labeling process to make a large number of unlabeled data be collected and utilized. In this paper, we propose a semi-supervised learning method based on feedback variational auto-encoder(FVAE), which uses both labeled data and unlabeled data. FVAE is a variation of variational auto-encoder(VAE), where a multi-layer perceptron is added for giving feedback. Using unlabeled data, we train FVAE and fetch the encoder of FVAE. And then, we extract features from labeled data by using the encoder and train classifiers with the extracted features. In the experiments, we proved that FVAE-based semi-supervised learning was superior to VAE-based method in terms with accuracy and F1 score.

      더보기

      참고문헌 (Reference)

      1 이승관, "딥 뉴럴 네트워크 기반의 음성 향상을 위한 데이터 증강" 한국멀티미디어학회 22 (22): 749-758, 2019

      2 "Tutor.com"

      3 "Tensorflow"

      4 "SmartTutor"

      5 L. Zhao, "Simnest: Social Media Nested Epidemic Simulation Via Online Semisupervised Deep Learning" 639-648, 2015

      6 Y. Cheng, "Semi-supervised Learning for Neural Machine Translation" 1965-1974, 2016

      7 "Scikit-learn"

      8 Y. Wang, "SSPA : An Effective Semi-supervised Peer Assessment Method for Large Scale MOOCs" 1-19, 2019

      9 I. E. Livieris, "Predicting Secondary School Students' Performance Utilizing a Semi-supervised Learning Approach" 57 (57): 448-470, 2019

      10 "KDD Cup 2015"

      1 이승관, "딥 뉴럴 네트워크 기반의 음성 향상을 위한 데이터 증강" 한국멀티미디어학회 22 (22): 749-758, 2019

      2 "Tutor.com"

      3 "Tensorflow"

      4 "SmartTutor"

      5 L. Zhao, "Simnest: Social Media Nested Epidemic Simulation Via Online Semisupervised Deep Learning" 639-648, 2015

      6 Y. Cheng, "Semi-supervised Learning for Neural Machine Translation" 1965-1974, 2016

      7 "Scikit-learn"

      8 Y. Wang, "SSPA : An Effective Semi-supervised Peer Assessment Method for Large Scale MOOCs" 1-19, 2019

      9 I. E. Livieris, "Predicting Secondary School Students' Performance Utilizing a Semi-supervised Learning Approach" 57 (57): 448-470, 2019

      10 "KDD Cup 2015"

      11 V. Tam, "Enhancing Educational Data Mining Techniques on Online Educational Resources with a Semi-supervised Learning Approach" 203-206, 2015

      12 S. Klingler, "Efficient Feature Embeddings for Student Classification with Variational Auto-encoders" 72-79, 2017

      13 R. S. Baker, "Detecting Student Misuse of Intelligent Tutoring Systems" 531-540, 2004

      14 S. Adjei, "Clustering Students in ASSIS Tments : Exploring System-and School-Level Traits to Advance Personalization" 340-341, 2017

      15 F. H. H. Mahyoub, "Building an Arabic Sentiment Lexicon Using Semi-supervised Learning" 26 (26): 417-424, 2014

      16 K. M. Adal, "Automated Detection of Microaneurysms Using Scaleadapted Blob Analysis and Semi-supervised Learning" 114 (114): 1-10, 2014

      17 "AutoTutor"

      18 D. P. Kingma, "Auto-encoding Variational Bayes"

      19 D.P. Kingma, "Adam: A method for Stochastic Optimization"

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.61 0.61 0.56
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.49 0.44 0.695 0.15
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼