1 지병훈 ; 장인호, "한국인에서 신장암의 과잉 진단 및 작은 국소신장암에서 능동적 관찰의 의미" 대한비뇨기종양학회 16 (16): 15-24, 2018
2 K. Simonyan, "Very deep convolutional networks for large-scale image recognition" 2015
3 Y. Pu, "Variational autoencoder for deep learning of images, labels and captions" 2016
4 Nikola Simidjievski, "Variational Autoencoders for Cancer Data Integration: Design Principles and Computational Practice" Frontiers Media SA 10 : 2019
5 W. M, Linehan, "The genetic basis of cancer of the kidney" 170 : 2163-2172, 2003
6 Y. Zhan, "Systematic Analysis of the Global, Regional and National Burden of Kidney Cancer from 1990 to 2017 : Results from the Global Burden of Disease Study 2017" 8 (8): 302-319, 2021
7 L. Le, "Supervised autoencoders : Improving generalization performance with unsupervised regularizers" 2018
8 M. Amgad, "Structured crowdsourcing enables convolutional segmentation of histology images" 35 (35): 3461-3467, 2019
9 P. Vincent, "Stacked denoising autoencoders : Learning useful representations in a deep network with a local denoising criterion" 11 : 3371-3408, 2010
10 A. J. Peired, "Sex and Gender Differences in Kidney Cancer : Clinical and Experimental Evidence" 13 (13): 4588-, 2021
1 지병훈 ; 장인호, "한국인에서 신장암의 과잉 진단 및 작은 국소신장암에서 능동적 관찰의 의미" 대한비뇨기종양학회 16 (16): 15-24, 2018
2 K. Simonyan, "Very deep convolutional networks for large-scale image recognition" 2015
3 Y. Pu, "Variational autoencoder for deep learning of images, labels and captions" 2016
4 Nikola Simidjievski, "Variational Autoencoders for Cancer Data Integration: Design Principles and Computational Practice" Frontiers Media SA 10 : 2019
5 W. M, Linehan, "The genetic basis of cancer of the kidney" 170 : 2163-2172, 2003
6 Y. Zhan, "Systematic Analysis of the Global, Regional and National Burden of Kidney Cancer from 1990 to 2017 : Results from the Global Burden of Disease Study 2017" 8 (8): 302-319, 2021
7 L. Le, "Supervised autoencoders : Improving generalization performance with unsupervised regularizers" 2018
8 M. Amgad, "Structured crowdsourcing enables convolutional segmentation of histology images" 35 (35): 3461-3467, 2019
9 P. Vincent, "Stacked denoising autoencoders : Learning useful representations in a deep network with a local denoising criterion" 11 : 3371-3408, 2010
10 A. J. Peired, "Sex and Gender Differences in Kidney Cancer : Clinical and Experimental Evidence" 13 (13): 4588-, 2021
11 F. Pedregosa, "Scikit-learn : Machine learning in Python" 12 : 2825-2830, 2011
12 D. Hepps, "Risk of renal insufficiency in African-Americans after radical nephrectomy for kidney cancer" 24 (24): 391-395, 2006
13 J. J. Hsieh, "Renal cell carcinoma" 3 (3): 1-19, 2017
14 L. Lipworth, "Renal cell cancer histological subtype distribution differs by race and sex" 117 (117): 260-265, 2016
15 D. A. Siegel, "Rates and trends of pediatric acute lymphoblastic leukemia—United States, 2001–2014" 66 (66): 950-954, 2017
16 A. F. Olshan, "Racial difference in histologic subtype of renal cell carcinoma" 2 (2): 744-749, 2013
17 H. Y. Xiong, "RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease" 347 (347): 1-20, 2015
18 A. Paszke, "Pytorch : An imperative style, high-performance deep learning library" 8026-8037, 2019
19 T. R. Rebbeck, "Prostate cancer disparities by race and ethnicity : from nucleotide to neighborhood" 8 (8): a030387-, 2018
20 B. J. Kim, "Prediction of inherited genomic susceptibility to 20 common cancer types by a supervised machine-learning method" 115 (115): 1322-1327, 2018
21 J. R. Vasselli, "Predicting survival in patients with metastatic kidney cancer by geneexpression profiling in the primary tumor" 100 (100): 6958-6963, 2003
22 P. Mamoshina, "Population specific biomarkers of human aging : a big data study using South Korean, Canadian, and Eastern European patient populations" 73 (73): 1482-1490, 2018
23 L. A. Torre, "Ovarian cancer statistics, 2018" 68 : 284-296, 2018
24 P. Baldi, "Neural networks and principal component analysis : Learning from examples without local minima" 2 : 53-58, 1989
25 "National Cancer Center"
26 H. M. Kim, "Machine learning approach to predict the probability of recurrence of renal cell carcinoma after surgery : Prediction model development study" 9 (9): e25635-, 2021
27 K. Sohn, "Learning structured output representation using deep conditional generative models" 2 : 3483-3491, 2015
28 N. Hadjiyski, "Kidney cancer staging: Deep learning neural network based approach" 2020
29 N. Chowdhury, "Kidney cancer : an overview of current therapeutic approaches" 47 (47): 419-431, 2020
30 V. M. G. Olivares, "Immunohistochemical profile of renal cell tumours" 52 (52): 214-221, 2019
31 V. M. G. Olivares, "Immunohistochemical profile of renal cell tumours" 52 (52): 214-221, 2019
32 "Genomic Data Commons"
33 M. Mohri, "Generalization bounds for supervised dimensionality reduction" 44 : 226-241, 2015
34 M. Mancini, "Gender-related approach to kidney cancer management : Moving forward" 21 (21): 3378-, 2020
35 I. Lucca, "Gender differences in incidence and outcomes of urothelial and kidney cancer" 12 (12): 585-592, 2015
36 M. Mohri, "Foundations of Machine Learning" MIT Press 2012
37 W. M. Linehan, "Focus on kidney cancer" 6 (6): 223-228, 2004
38 M. A. Ranzato, "Efficient learning of sparse representations with an energy-based model" 19 : 1137-1144, 2007
39 S. J. O. Nomura, "Dietary intake of soy and cruciferous vegetables and treatmentrelated symptoms in Chinese-American and non-Hispanic White breast cancer survivors" 168 (168): 467-479, 2017
40 B. Shuch, "Defining early-onset kidney cancer : implications for germline and somatic mutation testing and clinical management" 32 (32): 431-437, 2014
41 S. Belharbi, "Deep neural networks regularization for structured output prediction" 281 : 169-177, 2018
42 Y. Bengio, "Deep generative stochastic networks trainable by backprop" 32 : 226-234, 2014
43 M. Mostavi, "Convolutional neural network models for cancer type prediction based on gene expression" 13 (13): 1-13, 2020
44 Cancer Genome Atlas Research Network, "Comprehensive molecular characterization of papillary renal-cell carcinoma" 374 (374): 135-145, 2016
45 Ho Sun Shon, "Classification of Kidney Cancer Data Using Cost-Sensitive Hybrid Deep Learning Approach" MDPI AG 12 (12): 154-, 2020
46 D. P. Kingma, "Auto-encoding variational bayes" 2014
47 N. E. M. Khalifa, "Artificial intelligence technique for gene expression by tumor RNA-Seq data : a novel optimized deep learning approach" 8 : 22874-22883, 2020
48 L. A. Gottlieb, "Adaptive metric dimensionality reduction" 620 : 105-118, 2016
49 A. M. Ali, "A machine learning approach for the classification of kidney cancer subtypes using miRNA genome data" 8 (8): 1-14, 2018
50 R. Tabares-Soto, "A comparative study of machine learning and deep learning algorithms to classify cancer types based on microarray gene expression data" 6 : e270-, 2020
51 O. G. Troyanskaya, "A Bayesian framework for combining heterogeneous data sources for gene function prediction(in Saccharomyces cerevisiae)" 100 (100): 8348-8353, 2003