RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      신경회로망 모델을 이용한 선삭 공정의 실시간 이상진단 시스템의 개발 = Development of In-process Condition Monitoring System on Turning Process using Artificial Neural Network

      한글로보기

      https://www.riss.kr/link?id=A30040066

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The in-process detection of the state of cutting tool is one of the most important technical problem in Intelligent Machining System.
      This paper presents a method of detecting the state of cutting tool in turning process by using Artificial Neural Network. In order to sense the state of cutting tool, the sensor fusion of an acoustic emission sensor and a force sensor is applied in this paper.
      It is shown that AErms and three directional dynamic mean cutting forces are sensitive to the tool wear. Therefore the six pattern features that is, the four sensory signal features and two cutting conditions are selected for the monitoring system with Artificial Neural Network.
      The proposed monitoring system shows a good recognition rate for the different cutting conditions.
      번역하기

      The in-process detection of the state of cutting tool is one of the most important technical problem in Intelligent Machining System. This paper presents a method of detecting the state of cutting tool in turning process by using Artificial Neural N...

      The in-process detection of the state of cutting tool is one of the most important technical problem in Intelligent Machining System.
      This paper presents a method of detecting the state of cutting tool in turning process by using Artificial Neural Network. In order to sense the state of cutting tool, the sensor fusion of an acoustic emission sensor and a force sensor is applied in this paper.
      It is shown that AErms and three directional dynamic mean cutting forces are sensitive to the tool wear. Therefore the six pattern features that is, the four sensory signal features and two cutting conditions are selected for the monitoring system with Artificial Neural Network.
      The proposed monitoring system shows a good recognition rate for the different cutting conditions.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼