RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      로그-정규분포와 파레토 합성 분포의 임계점 추정 = Threshold estimation for the composite lognormal-GPD models

      한글로보기

      https://www.riss.kr/link?id=A105696491

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The composite lognormal-GPD models (LN-GPD) enjoys both merits from log-normality for the body of distribution and GPD for the thick tailedness of the observation. However, in the estimation perspective, LN-GPD model performs poorly due to numerical instability. Therefore, a two-stage procedure, that estimates threshold first then estimates other parameters later, is a natural method to consider. This paper considers five nonparametric threshold estimation methods widely used in extreme value theory and compares their performance in LN-GPD parameter estimation. A simulation study reveals that simultaneous maximum likelihood estimation performs good in threshold estimation, but very poor in tail index estimation. However, the nonparametric method performs good in tail index estimation, but introduced bias in threshold estimation. Our method is illustrated to the service time of an Israel bank call center and shows that the LN-GPD model fits better than LN or GPD model alone.
      번역하기

      The composite lognormal-GPD models (LN-GPD) enjoys both merits from log-normality for the body of distribution and GPD for the thick tailedness of the observation. However, in the estimation perspective, LN-GPD model performs poorly due to numerical i...

      The composite lognormal-GPD models (LN-GPD) enjoys both merits from log-normality for the body of distribution and GPD for the thick tailedness of the observation. However, in the estimation perspective, LN-GPD model performs poorly due to numerical instability. Therefore, a two-stage procedure, that estimates threshold first then estimates other parameters later, is a natural method to consider. This paper considers five nonparametric threshold estimation methods widely used in extreme value theory and compares their performance in LN-GPD parameter estimation. A simulation study reveals that simultaneous maximum likelihood estimation performs good in threshold estimation, but very poor in tail index estimation. However, the nonparametric method performs good in tail index estimation, but introduced bias in threshold estimation. Our method is illustrated to the service time of an Israel bank call center and shows that the LN-GPD model fits better than LN or GPD model alone.

      더보기

      참고문헌 (Reference)

      1 Gonzalo, J., "Which extreme values are really extreme?" 2 : 349-369, 2004

      2 Nguyen, T., "Tail inference: where does the tail begin?" 15 : 437-461, 2012

      3 Bee, M., "Statistical analysis of the lognormal-Pareto distribution using probability weighted moments and maximum likelihood" 2040-2060, 2012

      4 Drees, H., "Selecting the optimal sample fraction in univariate extreme value estimation" 75 : 149-172, 1998

      5 Baek, C., "Second order properties of distribution tails and estimation of tail exponents in random difference equations" 12 : 361-400, 2009

      6 Scollnik, D. P. M., "On composite lognormal-Pareto models" 2007 : 20-33, 2007

      7 Shen, H., "Non-parametric modelling of time-varying customer service times at a bank call centre" 22 : 297-311, 2006

      8 Nadarajah, S., "New composite models for the Danish fire insurance data" 2014 : 180-187, 2014

      9 Cooray, K., "Modeling actuarial data with a composite lognormal-Pareto model" 2005 : 321-334, 2005

      10 Mandelbrot, B. B., "Fractals and Scaling in Finance" Springer 252-269, 1997

      1 Gonzalo, J., "Which extreme values are really extreme?" 2 : 349-369, 2004

      2 Nguyen, T., "Tail inference: where does the tail begin?" 15 : 437-461, 2012

      3 Bee, M., "Statistical analysis of the lognormal-Pareto distribution using probability weighted moments and maximum likelihood" 2040-2060, 2012

      4 Drees, H., "Selecting the optimal sample fraction in univariate extreme value estimation" 75 : 149-172, 1998

      5 Baek, C., "Second order properties of distribution tails and estimation of tail exponents in random difference equations" 12 : 361-400, 2009

      6 Scollnik, D. P. M., "On composite lognormal-Pareto models" 2007 : 20-33, 2007

      7 Shen, H., "Non-parametric modelling of time-varying customer service times at a bank call centre" 22 : 297-311, 2006

      8 Nadarajah, S., "New composite models for the Danish fire insurance data" 2014 : 180-187, 2014

      9 Cooray, K., "Modeling actuarial data with a composite lognormal-Pareto model" 2005 : 321-334, 2005

      10 Mandelbrot, B. B., "Fractals and Scaling in Finance" Springer 252-269, 1997

      11 Resnick, S., "Extreme Values, Regular Variation and Point Processes" Springer 1987

      12 Hall, P., "Adaptive estimate of parameters of regular variation" 13 : 331-341, 1985

      13 Hill, B. M., "A simple general approach to inference about the tail of a distribution" 3 : 1163-1174, 1975

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2000-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.38 0.38 0.38
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.35 0.34 0.565 0.17
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼