RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      적분개념의 발달 (리만적분에서 르베그적분으로의 이행을 중심으로) = Development of the Integral Concept (from Riemann to Lebesgue)

      한글로보기

      https://www.riss.kr/link?id=A101558644

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In the 19th century Fourier and Dirichlet studied the expansion of "arbitrary" functions into the trigonometric series and this led to the development of the Riemann's definition of the integral. Riemann's integral was considered to be of the highest generality and was discussed intensively. As a result, some weak points were found but, at least at the beginning, these were not considered as the criticism of the Riemann's integral. But after Jordan introduced the theory of content and measure-theoretic approach to the concept of the integral, and after Borel developed the Jordan's theory of content to a theory of measure, Lebesgue joined these two concepts together and obtained a new theory of integral, now known as the "Lebesgue integral".
      번역하기

      In the 19th century Fourier and Dirichlet studied the expansion of "arbitrary" functions into the trigonometric series and this led to the development of the Riemann's definition of the integral. Riemann's integral was considered to be of the highest ...

      In the 19th century Fourier and Dirichlet studied the expansion of "arbitrary" functions into the trigonometric series and this led to the development of the Riemann's definition of the integral. Riemann's integral was considered to be of the highest generality and was discussed intensively. As a result, some weak points were found but, at least at the beginning, these were not considered as the criticism of the Riemann's integral. But after Jordan introduced the theory of content and measure-theoretic approach to the concept of the integral, and after Borel developed the Jordan's theory of content to a theory of measure, Lebesgue joined these two concepts together and obtained a new theory of integral, now known as the "Lebesgue integral".

      더보기

      참고문헌 (Reference)

      1 Fourier, J. B. I, "Théorie analytique de la chaleur"

      2 Grabiner, Judith V, "The Origins of Cauchy's Rigorous Calculus" Dover 1981

      3 Lebesgue, H, "Sur le developpement de la notion d'intégrale" 19 : 54-74, 1926

      4 Iushkevich, A. P, "On the origins of Cauchy's concept of the definite integral(in Russian)" 1 : 373-411, 1974

      5 Lebesgue, H, "Notices sur les travaux scientifiques de M. Henri Lebesgue, Toulouse: Privat, or Oeuvres Scientifiques 1" 97-175, 1922

      6 Darboux, G, "Ḿemoire sur les fonctions discontinues, Annales sciéntifiques de l'Ecole Normale Supéreure, 2éme série, IV" 57-112, 1875

      7 Hawkins, T, "Lebesgue's Theory of Integral/ Its Origins and Development" Madison: University of wisconsin Press 1970

      8 "Laugwitz, Detlef, Bernard Riemann, 1826-1866 : Turning Points in the Conception of Mathematics" Birkhaeuser 1999

      9 Euler, L, "Institutiones calculi integralis" St. Petersburg 1768-1780,

      10 Euler, L, "Institutiones calculi differentialis" St. Petersburg 1755-,

      1 Fourier, J. B. I, "Théorie analytique de la chaleur"

      2 Grabiner, Judith V, "The Origins of Cauchy's Rigorous Calculus" Dover 1981

      3 Lebesgue, H, "Sur le developpement de la notion d'intégrale" 19 : 54-74, 1926

      4 Iushkevich, A. P, "On the origins of Cauchy's concept of the definite integral(in Russian)" 1 : 373-411, 1974

      5 Lebesgue, H, "Notices sur les travaux scientifiques de M. Henri Lebesgue, Toulouse: Privat, or Oeuvres Scientifiques 1" 97-175, 1922

      6 Darboux, G, "Ḿemoire sur les fonctions discontinues, Annales sciéntifiques de l'Ecole Normale Supéreure, 2éme série, IV" 57-112, 1875

      7 Hawkins, T, "Lebesgue's Theory of Integral/ Its Origins and Development" Madison: University of wisconsin Press 1970

      8 "Laugwitz, Detlef, Bernard Riemann, 1826-1866 : Turning Points in the Conception of Mathematics" Birkhaeuser 1999

      9 Euler, L, "Institutiones calculi integralis" St. Petersburg 1768-1780,

      10 Euler, L, "Institutiones calculi differentialis" St. Petersburg 1755-,

      11 Grattan-Guiness, L, "From the Calculus to Set Theory, 1630-1910 : An Introductory History" Duckworth 1980

      12 Jahnke, Hans N, "A History of Analysis" AMS 2003

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-06-07 학술지명변경 한글명 : 한국수학사학회지 -> 한국수학사학회지
      외국어명 : The Korea Journal for History of Mathematic -> Journal for History of Mathematics
      KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-06-09 학술지명변경 한글명 : 한국수학사학회지 -> 한국수학사학회지
      외국어명 : Historia Mathematica -> The Korea Journal for History of Mathematic
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.19 0.19 0.23
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.23 0.21 0.422 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼