RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Upright orientation of 3D shapes via tensor rank minimization

      한글로보기

      https://www.riss.kr/link?id=A103789326

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In general, the upright orientation of a model is beneficial for human to recognize this model and is widely used in geometry processingand computer graphics. However, the orientation of the model obtained by existing technologies, such as 3D scanning systems ormodeling, may be far away from the right orientation. In order to solve this problem, a robust and efficient upright method is needed. Weobserve that when the model is aligned with the three axes, the rank of the three-order tensor constructed by this model is the lowest usually.

      Inspired by this observation, we formulate the alignment of the 3D model with axes as a low-rank tensor optimization problemwhich is a global and unsupervised method and the genetic algorithm (GA) is used to solve this optimization problem. After the 3Dmodel has been aligned with the three axes, some geometric properties can be used to pick out the best upright orientation from the sixcandidate supporting bases easily. The three-order tensor is constructed by voxelizing the bounding box of the 3D model, and then fillingthe voxel element with zero or one based on whether it contains the points of the model or not. The experimental results demonstrate thatour method is robust, efficient and effective for all kinds of the models (manifold or non-manifold, man-made or non-artificial, or pointcloud).
      번역하기

      In general, the upright orientation of a model is beneficial for human to recognize this model and is widely used in geometry processingand computer graphics. However, the orientation of the model obtained by existing technologies, such as 3D scanning...

      In general, the upright orientation of a model is beneficial for human to recognize this model and is widely used in geometry processingand computer graphics. However, the orientation of the model obtained by existing technologies, such as 3D scanning systems ormodeling, may be far away from the right orientation. In order to solve this problem, a robust and efficient upright method is needed. Weobserve that when the model is aligned with the three axes, the rank of the three-order tensor constructed by this model is the lowest usually.

      Inspired by this observation, we formulate the alignment of the 3D model with axes as a low-rank tensor optimization problemwhich is a global and unsupervised method and the genetic algorithm (GA) is used to solve this optimization problem. After the 3Dmodel has been aligned with the three axes, some geometric properties can be used to pick out the best upright orientation from the sixcandidate supporting bases easily. The three-order tensor is constructed by voxelizing the bounding box of the 3D model, and then fillingthe voxel element with zero or one based on whether it contains the points of the model or not. The experimental results demonstrate thatour method is robust, efficient and effective for all kinds of the models (manifold or non-manifold, man-made or non-artificial, or pointcloud).

      더보기

      참고문헌 (Reference)

      1 H. B. Fu, "Upright orientation of man-made objects" 27 (27): 42-, 2008

      2 Y. Jin, "Unsupervised upright orientation of man-made models" 74 (74): 99-108, 2012

      3 H. Yamauchi, "Towards stable and salient multiview representation of 3D shapes" 40-45, 2006

      4 P. Shilane, "The princeton shape benchmark" 167-178, 2004

      5 T. G. Kolda, "Tensor decompositions and applications" 51 (51): 455-500, 2009

      6 J. Liu, "Tensor completion for estimating missing values in visual data" 94 (94): 208-220, 2009

      7 Z. D. Zhang, "TILT: transform invariant low-rank textures" 99 (99): 1-24, 2012

      8 S. Tong, "Support vector machine active learning for image retrieval" 107-118, 2001

      9 Dong Woo Lee, "Shape design of a tire contour based on approximation model" 대한기계학회 25 (25): 149-155, 2011

      10 K. Xu, "Photo-inspired model-driven 3D object modeling" 30 (30): 80-, 2011

      1 H. B. Fu, "Upright orientation of man-made objects" 27 (27): 42-, 2008

      2 Y. Jin, "Unsupervised upright orientation of man-made models" 74 (74): 99-108, 2012

      3 H. Yamauchi, "Towards stable and salient multiview representation of 3D shapes" 40-45, 2006

      4 P. Shilane, "The princeton shape benchmark" 167-178, 2004

      5 T. G. Kolda, "Tensor decompositions and applications" 51 (51): 455-500, 2009

      6 J. Liu, "Tensor completion for estimating missing values in visual data" 94 (94): 208-220, 2009

      7 Z. D. Zhang, "TILT: transform invariant low-rank textures" 99 (99): 1-24, 2012

      8 S. Tong, "Support vector machine active learning for image retrieval" 107-118, 2001

      9 Dong Woo Lee, "Shape design of a tire contour based on approximation model" 대한기계학회 25 (25): 149-155, 2011

      10 K. Xu, "Photo-inspired model-driven 3D object modeling" 30 (30): 80-, 2011

      11 K. Xu, "Partial intrinsic reflection symmetry of 3D shapes" 28 (28): 138-, 2009

      12 A. D. Belegundu, "Optimization Concepts and Applications in Engineering" Prentice Hall 1999

      13 J. L. Wu, "Mesh saliency with global rarity" 2013

      14 L. Guo, "Hole-filling by rank sparsity tensor decomposition for medical imaging" 94 (94): 396-399, 2011

      15 P. Shilane, "Distinctive regions of 3D surfaces" 26 (26): 2007

      16 E. Paquet, "Description of shape information for 2D and 3D objects" 16 (16): 103-122, 2000

      17 F. R. Bach, "Consistency of trace norm minimization" (9) : 1019-1048, 2008

      18 P. P. Vázquez, "Automatic view selection using viewpoint entropy and its application to image-based modelling" 22 (22): 689-700, 2003

      19 J. B. Luo, "Automatic image orientation detection via confidence-based integration of low-level and semantic cues" 27 (27): 715-726, 2005

      20 K. Hu, "Automatic generation of canonical views for CAD models" 17-24, 2011

      21 J. W. H. Tangelder, "A survey of content based 3D shape retrieval methods" 39 (39): 441-471, 2008

      22 J. Podolak, "A planar-reflective symmetry transform for 3D shapes" 25 (25): 549-559, 2006

      23 P. J. Besl, "A method for registration of 3D shapes" 14 (14): 239-256, 1992

      24 S. Biasotti, "3D shape matching through topological structures" 194-203, 2003

      25 M. Ankerst, "3D shape histograms for similarity search and classification in spatial database" 207-226, 1999

      26 "3D Scanning System"

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼