RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      적대적 생성 신경망을 활용한 가상 뇌파 데이터 생성 - 건축공간에 대한 사용자 선호도 파악을 위한 딥러닝 분류모델의 훈련지원을 위해 -

      한글로보기

      https://www.riss.kr/link?id=A106524089

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      It is important for architects to recognize subjective reponses of users toward architectural design alternatives in early phase of planning and design. In this regard, a model which analyses affective responses of decision-makers is strongly required. A previous study has structured Electroencephalography(EEG)-based deep-learning classification model for evaluating subjects’ emotional responses in quantitative manner in given experiment situation using EEG data. However, it is limited volume of EEG data that results in difficulty in training process of the model. In this regard, this paper aims to suggest Generative Adversarial Networks(GANs) which consists of generator for “fake” EEG data generation and discriminator for training the generator. GANs model may provide one possible way of wide adoption of the suggested model and structuring design knowledge database using EEG data especially for designing architectural spaces for children, elderly and patients those who interviews or questionnaires are hard to be conducted.
      번역하기

      It is important for architects to recognize subjective reponses of users toward architectural design alternatives in early phase of planning and design. In this regard, a model which analyses affective responses of decision-makers is strongly required...

      It is important for architects to recognize subjective reponses of users toward architectural design alternatives in early phase of planning and design. In this regard, a model which analyses affective responses of decision-makers is strongly required. A previous study has structured Electroencephalography(EEG)-based deep-learning classification model for evaluating subjects’ emotional responses in quantitative manner in given experiment situation using EEG data. However, it is limited volume of EEG data that results in difficulty in training process of the model. In this regard, this paper aims to suggest Generative Adversarial Networks(GANs) which consists of generator for “fake” EEG data generation and discriminator for training the generator. GANs model may provide one possible way of wide adoption of the suggested model and structuring design knowledge database using EEG data especially for designing architectural spaces for children, elderly and patients those who interviews or questionnaires are hard to be conducted.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. 서론
      • 2. 이론적 고찰
      • 3. 적대적 생성 신경망 구축
      • 4. 적대적 생성 신경망 실행
      • Abstract
      • 1. 서론
      • 2. 이론적 고찰
      • 3. 적대적 생성 신경망 구축
      • 4. 적대적 생성 신경망 실행
      • 5. 결론
      • 참고문헌
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼