We investigate the generalized Hyers-Ulam-Rassias stability in p-Banach spaces for the following functional equation which is two types, that is, either cubic or quadratic: 2f(x+3y) + 6f(x-y) + 12f(2y) = 2f(x - 3y) + 6f(x + y) + 3f(4y). The concept of...
We investigate the generalized Hyers-Ulam-Rassias stability in p-Banach spaces for the following functional equation which is two types, that is, either cubic or quadratic: 2f(x+3y) + 6f(x-y) + 12f(2y) = 2f(x - 3y) + 6f(x + y) + 3f(4y). The concept of Hyers-Ulam-Rassias stability originated essentially with the Th. M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.