RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      시간별 기온 민감도를 이용한 하절기 평일 단기 전력수요 예측

      한글로보기

      https://www.riss.kr/link?id=A106354520

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Load forecasting is important to determine the market price and the supply reserve. The electric load in summer is influenced by meteorological elements, especially most affected by temperature. Therefore, the temperature directly related to the cooling loads must be precisely considered to improve the accuracy of the load forecasting. In this paper, we propose the load forecasting model for 24 hours during summer weekdays based on the artificial neural network. To improve the forecasting accuracy, we classify the weekdays into two groups of Monday and Tuesday-Friday, where electric load pattern is similar within each group. Furthermore, the hourly temperature sensitivity was calculated and used as an input variable. The simulation results show that this proposed approach can be applied to forecast the electric load in summer weekdays accurately.
      번역하기

      Load forecasting is important to determine the market price and the supply reserve. The electric load in summer is influenced by meteorological elements, especially most affected by temperature. Therefore, the temperature directly related to the cooli...

      Load forecasting is important to determine the market price and the supply reserve. The electric load in summer is influenced by meteorological elements, especially most affected by temperature. Therefore, the temperature directly related to the cooling loads must be precisely considered to improve the accuracy of the load forecasting. In this paper, we propose the load forecasting model for 24 hours during summer weekdays based on the artificial neural network. To improve the forecasting accuracy, we classify the weekdays into two groups of Monday and Tuesday-Friday, where electric load pattern is similar within each group. Furthermore, the hourly temperature sensitivity was calculated and used as an input variable. The simulation results show that this proposed approach can be applied to forecast the electric load in summer weekdays accurately.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. 서론
      • 2. 본론
      • 3. 사례연구
      • 4. 결론
      • Abstract
      • 1. 서론
      • 2. 본론
      • 3. 사례연구
      • 4. 결론
      • References
      더보기

      참고문헌 (Reference)

      1 김경환, "하절기 평일의 인공신경망을 이용한 24시간 전력수요 예측 알고리즘" 한국조명.전기설비학회 31 (31): 113-119, 2017

      2 박정도, "하계 특수경부하기간의 단기 전력수요예측" 대한전기학회 62 (62): 482-488, 2013

      3 송경빈, "단기수요예측 알고리즘" 대한전기학회 53 (53): 529-535, 2004

      4 김미경, "계절 및 날씨 정보를 이용한 인공신경망 기반 전력수요 예측 알고리즘 개발" 대한전자공학회 53 (53): 71-78, 2016

      5 Sang-lim Lee, "The estimation of weather risk in electric market" Korea Energy Economic Institute 2013

      6 B. Ratner, "The correlation coefficient: Its values range between +1/ 1, or do they?" 17 (17): 139-142, 2009

      7 Korea Power Exchange, "The 8th Basic Plan for Long-term Electricity Supply and Demand"

      8 N. Amjady, "Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm" 34 (34): 46-57, 2009

      9 Kunjin Chen, "Short-Term Load Forecasting With Deep Residual Networks" 10 (10): 3943-3952, 2019

      10 정대원, "Short-Term Load Forecast in Microgrids using Artificial Neural Networks" 대한전기학회 66 (66): 621-628, 2017

      1 김경환, "하절기 평일의 인공신경망을 이용한 24시간 전력수요 예측 알고리즘" 한국조명.전기설비학회 31 (31): 113-119, 2017

      2 박정도, "하계 특수경부하기간의 단기 전력수요예측" 대한전기학회 62 (62): 482-488, 2013

      3 송경빈, "단기수요예측 알고리즘" 대한전기학회 53 (53): 529-535, 2004

      4 김미경, "계절 및 날씨 정보를 이용한 인공신경망 기반 전력수요 예측 알고리즘 개발" 대한전자공학회 53 (53): 71-78, 2016

      5 Sang-lim Lee, "The estimation of weather risk in electric market" Korea Energy Economic Institute 2013

      6 B. Ratner, "The correlation coefficient: Its values range between +1/ 1, or do they?" 17 (17): 139-142, 2009

      7 Korea Power Exchange, "The 8th Basic Plan for Long-term Electricity Supply and Demand"

      8 N. Amjady, "Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm" 34 (34): 46-57, 2009

      9 Kunjin Chen, "Short-Term Load Forecasting With Deep Residual Networks" 10 (10): 3943-3952, 2019

      10 정대원, "Short-Term Load Forecast in Microgrids using Artificial Neural Networks" 대한전기학회 66 (66): 621-628, 2017

      11 Jung-Hwan Kim, "Short-Term Electric Load Forecasting Using Sensitivity By Temperature In Summer Weekdays" 351-352, 2019

      12 "Korea Meteorological Administration"

      13 Seong-Ho Ryu, "Improving Accuracy of Electric Load Forecasting in Summer 2014" 66 (66): 66-72, 2014

      14 Korea Electric Power Corporation, "Electrical Supply Terms and Conditions"

      15 Korea Electric Power Corporation, "Development of Integrated Demand Management Portal Based on Demand Forecasting" 2015

      16 Oh-Sung Kwon, "Coefficient selection technique of exponential smoothing model for weekday load forecasting" 295-296, 2010

      17 Korea Power Exchange, "A Study on Short-term Load Forecasting Technique and its Application" 2011

      18 E. Ceperic, "A Strategy for Short-Term Load Forecasting by Support Vector Regression Machines" 28 (28): 4356-4364, 2013

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 학술지 통합 (기타) KCI등재
      2001-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.27 0.27 0.24
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.21 0.19 0.366 0.08
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼