RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      1기 무한모선 시스템의 선로 고장판별을 위한 강화학습 기반 외란관측기 설계

      한글로보기

      https://www.riss.kr/link?id=A106354522

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      According to the increase of electric power demand in the modern society the power system is gradually expanding. This results in a growing need for an intelligent method of fast determination and protection against various failures in the power system. As the computer platform is improved, the system fault detection and reliable protection devices have been trying to enhance their performances using artificial intelligence techniques. If a failure occurs in the single-machine infinite bus(SMIB) system. the electrical output of the generator changes, which can be regarded as a result of an external disturbance input. This paper presents a line fault detection method by using a reinforcement learning-based disturbance observer that estimates the magnitude of the equivalent disturbance. Reinforcement learning is an algorithm that models the relationship between the behavior of an agent and the reward from environment. This paper has adopted the Deep Q-Network for training of the proposed disturbance observer. The performance of the proposed reinforcement learning-based disturbance observer is verified by computer simulations. The results show that the disturbance can be estimated successfully and the estimate can be used to detect the line fault.
      번역하기

      According to the increase of electric power demand in the modern society the power system is gradually expanding. This results in a growing need for an intelligent method of fast determination and protection against various failures in the power syste...

      According to the increase of electric power demand in the modern society the power system is gradually expanding. This results in a growing need for an intelligent method of fast determination and protection against various failures in the power system. As the computer platform is improved, the system fault detection and reliable protection devices have been trying to enhance their performances using artificial intelligence techniques. If a failure occurs in the single-machine infinite bus(SMIB) system. the electrical output of the generator changes, which can be regarded as a result of an external disturbance input. This paper presents a line fault detection method by using a reinforcement learning-based disturbance observer that estimates the magnitude of the equivalent disturbance. Reinforcement learning is an algorithm that models the relationship between the behavior of an agent and the reward from environment. This paper has adopted the Deep Q-Network for training of the proposed disturbance observer. The performance of the proposed reinforcement learning-based disturbance observer is verified by computer simulations. The results show that the disturbance can be estimated successfully and the estimate can be used to detect the line fault.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. 서론
      • 2. 본론
      • 3. 결론
      • References
      • Abstract
      • 1. 서론
      • 2. 본론
      • 3. 결론
      • References
      더보기

      참고문헌 (Reference)

      1 남순열, "송전 선로의 사고 거리에 따른 특성 주파수 해석" 대한전기학회 53 (53): 432-437, 2004

      2 H. Shim, "Yet another tutorial of disturbance observer : robust stabilization and recovery of nominal performance" 14 (14): 237-249, 2016

      3 X. Glorot, "Understanding the difficulty of training deep feedforward neural networks" 9 : 249-256, 2010

      4 Wei Yao, "TCSC Nonlinear Adaptive Damping Controller Design Based on RBF Neural Network to Enhance Power System Stability" 대한전기학회 8 (8): 252-261, 2013

      5 A. Juliani, "Simple Reinforcement Learning with Tensorflow" Hanbit Publishing Network 2017

      6 S. Das, "Secured zone-3 protection during power swing and voltage instability : an online approach" 11 (11): 437-446, 2017

      7 A. Levant, "Robust exact differentiation via sliding mode technique" 34 (34): 379-384, 1998

      8 R. S. Sutton, "Reinforcement Learning: An Introduction" MIT press 1998

      9 Ali Karami, "Radial Basis Function Neural Network for Power System Transient Energy Margin Estimation" 대한전기학회 3 (3): 468-475, 2008

      10 C. J. C. H. Watkins, "Q-learning" 8 (8): 279-292, 1992

      1 남순열, "송전 선로의 사고 거리에 따른 특성 주파수 해석" 대한전기학회 53 (53): 432-437, 2004

      2 H. Shim, "Yet another tutorial of disturbance observer : robust stabilization and recovery of nominal performance" 14 (14): 237-249, 2016

      3 X. Glorot, "Understanding the difficulty of training deep feedforward neural networks" 9 : 249-256, 2010

      4 Wei Yao, "TCSC Nonlinear Adaptive Damping Controller Design Based on RBF Neural Network to Enhance Power System Stability" 대한전기학회 8 (8): 252-261, 2013

      5 A. Juliani, "Simple Reinforcement Learning with Tensorflow" Hanbit Publishing Network 2017

      6 S. Das, "Secured zone-3 protection during power swing and voltage instability : an online approach" 11 (11): 437-446, 2017

      7 A. Levant, "Robust exact differentiation via sliding mode technique" 34 (34): 379-384, 1998

      8 R. S. Sutton, "Reinforcement Learning: An Introduction" MIT press 1998

      9 Ali Karami, "Radial Basis Function Neural Network for Power System Transient Energy Margin Estimation" 대한전기학회 3 (3): 468-475, 2008

      10 C. J. C. H. Watkins, "Q-learning" 8 (8): 279-292, 1992

      11 G. W. Kim, "Power System Analysis Using MATLAB 1" UUP 2005

      12 J. D. Glover, "Power System Analysis & Design" Cengage Learning 2016

      13 A. R. Bergen, "Power System Analysis" Prentice Hall 2000

      14 H. Saadat, "Power System Analysis" McGraw-Hill 2002

      15 D. Silver, "Mastering the game of Go with deep neural networks and tree search" 529 : 484-489, 2016

      16 V. Mnih, "Human-level control though deep reinforcement learning" 518 : 529-533, 2015

      17 A. P. Sakis Meliopoulos, "Dynamic state estimation-based protection : Status and Promise" 32 (32): 320-330, 2017

      18 J. Chang, "Dynamic state estimation using a nonlinear observer for optimal seriescapacitor switching control" 19 (19): 441-447, 1997

      19 Y. Cui, "Dynamic state estimation assisted out-of-step detection for generators using angular difference" 32 (32): 1441-1449, 2017

      20 R. S. Sutton, "Dyna, an integrated architecture for learning, planning, and reacting" 2 (2): 160-163, 1991

      21 W. H. Chen, "Disturbance observer-based control and related methods-An overview" 63 (63): 1083-1095, 2016

      22 이동규, "DFT 기반의 개선된 페이저 연산 기법을 적용한 거리계전 알고리즘" 대한전기학회 59 (59): 1360-1365, 2010

      23 S. Russel, "Artificial Intelligence: A Modern Approach" Prentice Hall 2003

      24 S. Paudyal, "Application of equal area criterion conditions in the time domain for out-of-step protection" 25 (25): 600-609, 2010

      25 M. J. Reddy, "Adaptive-neuro-fuzzy inference system approach for transmission line fault classification and location incorporating effects of powr swings" 2 (2): 235-244, 2008

      26 D. P. Kingma, "Adam: a method for stochastic optimization" 2015

      27 Y. I. Son, "A robust state observer using multiple integrators for multivariable LTI systems" E93-A (E93-A): 981-984, 2010

      28 E. Farantatos, "A predictive generator out-of-step protection and transient stability monitoring scheme enabled by a distributed dynamic state estimator" 31 (31): 1826-1835, 2016

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 학술지 통합 (기타) KCI등재
      2001-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.27 0.27 0.24
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.21 0.19 0.366 0.08
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼