RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      L-M 학습 방법의 BP 신경망을 이용한 가스 센싱 시스템의 분류와 농도 추정

      한글로보기

      https://www.riss.kr/link?id=A3007690

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, we have investigated the properties of multi-layer perceptron (MLP) for odour patterns classification and concentration estimation simultaneously. When the MLP may be has a fast convergence speed with small error and excellent mapping ability for classification, it can be possible to use for classification and concentration prediction of volatile chemicals simultaneously.
      However, the conventional MLP, which is back-propagation of error based on the steepest descent method, was difficult to use for odour classification and concentration estimation simultaneously, because it is slow to converge and may fal1 into the local minimum. We adapted the Levenberg-Marquardt(LM) algorithm[4,5]having advantages both the steepest descent method and Gauss-Newton method instead of the conventional steepest descent method for the simultaneous classification and concentration estimation of odours. And, We designed the artificial odour sensing system(Electronic Nose) and applied LM-BP algorithm for classification and concentration prediction of VOC gases.
      번역하기

      In this paper, we have investigated the properties of multi-layer perceptron (MLP) for odour patterns classification and concentration estimation simultaneously. When the MLP may be has a fast convergence speed with small error and excellent mapping a...

      In this paper, we have investigated the properties of multi-layer perceptron (MLP) for odour patterns classification and concentration estimation simultaneously. When the MLP may be has a fast convergence speed with small error and excellent mapping ability for classification, it can be possible to use for classification and concentration prediction of volatile chemicals simultaneously.
      However, the conventional MLP, which is back-propagation of error based on the steepest descent method, was difficult to use for odour classification and concentration estimation simultaneously, because it is slow to converge and may fal1 into the local minimum. We adapted the Levenberg-Marquardt(LM) algorithm[4,5]having advantages both the steepest descent method and Gauss-Newton method instead of the conventional steepest descent method for the simultaneous classification and concentration estimation of odours. And, We designed the artificial odour sensing system(Electronic Nose) and applied LM-BP algorithm for classification and concentration prediction of VOC gases.

      더보기

      목차 (Table of Contents)

      • 1.서론
      • 2.센서 어레이와 후각인식시스템
      • 3.LM-BP 신경회로망
      • 4.LMBP 알고리즘을 이용한 분류 및 농도 추정
      • 5.실험결과
      • 1.서론
      • 2.센서 어레이와 후각인식시스템
      • 3.LM-BP 신경회로망
      • 4.LMBP 알고리즘을 이용한 분류 및 농도 추정
      • 5.실험결과
      • 6.결론
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼