RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      A Spline-Regularized Sinogram Smoothing Method for Filtered Backprojection Tomographic Reconstruction

      한글로보기

      https://www.riss.kr/link?id=A101119948

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      Statistical reconstruction methods in the context of a Bayesian framework have played an important role in emission tomography since they allow to incorporate a priori information into the reconstruction algorithm. Given the ill-posed nature of tomographic inversion and the poor quality of projection data, the Bayesian approach uses regularizers to stabilize solutions by incorporating suitable prior models. In this work we show that, while the quantitative performance of the standard filtered backprojection (FBP) algorithm is not as good as that of Bayesian methods, the application of spline-regularized smoothing to the sinogram space can make the FBP algorithm improve its performance by inheriting the advantages of using the spline priors in Bayesian methods. We first show how to implement the spline-regularized smoothing filter by deriving mathematical relationship between the regularization and the lowpass filtering. We then compare quantitative performance of our new FBP algorithms using the quantitation of bias/variance and the total squared error (TSE) measured over noise trials. Our numerical results show that the second-order spline filter applied to FBP yields the best results in terms of TSE among the three different spline orders considered in our experiments.
      번역하기

      Statistical reconstruction methods in the context of a Bayesian framework have played an important role in emission tomography since they allow to incorporate a priori information into the reconstruction algorithm. Given the ill-posed nature of tomogr...

      Statistical reconstruction methods in the context of a Bayesian framework have played an important role in emission tomography since they allow to incorporate a priori information into the reconstruction algorithm. Given the ill-posed nature of tomographic inversion and the poor quality of projection data, the Bayesian approach uses regularizers to stabilize solutions by incorporating suitable prior models. In this work we show that, while the quantitative performance of the standard filtered backprojection (FBP) algorithm is not as good as that of Bayesian methods, the application of spline-regularized smoothing to the sinogram space can make the FBP algorithm improve its performance by inheriting the advantages of using the spline priors in Bayesian methods. We first show how to implement the spline-regularized smoothing filter by deriving mathematical relationship between the regularization and the lowpass filtering. We then compare quantitative performance of our new FBP algorithms using the quantitation of bias/variance and the total squared error (TSE) measured over noise trials. Our numerical results show that the second-order spline filter applied to FBP yields the best results in terms of TSE among the three different spline orders considered in our experiments.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼